

ALAGAPPA UNIVERSITY
(Accredited with ‘A+’ Grade by NAAC (with CGPA: 3.64) in the Third Cycle and Graded

as category - I University by MHRD-UGC)

(A State University Established by the Government of Tamilnadu)

KARAIKUDI – 630 003

DIRECTORATE OF DISTANCE EDUCATION

M.Sc. (INFORMATION TECHNOLOGY)

Second Year – Third Semester

31331–Open Source Software

 Copy Right Reserved For Private Use only

Author:

Dr. M. Ilayaraja

Assistant Professor

Department of Computer Science and Information Technology

Kalasalingam Academy of Research and Education

Anand Nagar, Krishnankoil. 626126.

Reviewer:

Dr. P. Prabhu

Assistant Professor in Information Technology

Directorate of Distance Education

Alagappa University,

Karaikudi.

“The Copyright shall be vested with Alagappa University”

All rights reserved. No part of this publication which is material protected by this copyright notice may be

reproduced or transmitted or utilized or stored in any form or by any means now known or hereinafter

invented, electronic, digital or mechanical, including photocopying, scanning, recording or by any information

storage or retrieval system, without prior written permission from the Alagappa University, Karaikudi, Tamil

Nadu.

SYLLABI-BOOK MAPPING TABLE

Open Source Software

SYLLABI MAPPING IN BOOK

BLOCK1: INTRODUCTION

UNIT-1:Introduction to Open Sources: Need of Open Sources-

Advantages of Open Sources-Applications of Open sources

UNIT-2:Open Source Operating System: LINUX: Introduction-

General Overview-Kernel Mode and user mode-Process

UNIT-3:Advanced Concepts: Scheduling-Personalities-Cloning-

Signals-Development with Linux

(Pages 1-7)

(Pages 8-17)

(Pages 18-30)

BLOCK 2: OPEN SOURCE DATABASE

UNIT-4:MySQL: Introduction -Setting up Account Starting,

terminating and writing your Own SQL programs

UNIT-5:Record selection Technology-Working with strings-Date

and Time

UNIT-6:Sorting query Results-Generating Summary-Working

with Metadata- Using Sequences- My SQL and Web

(Pages 31-40)

(Pages 41-55)

(Pages 56-66)

BLOCK 3: OPEN SOURCE PROGRAMMING LANGUAGE-

PHP

UNIT-7:PHP: Introduction- Programming in Web Environment-

Variables-Constants-Data types-Operators- Statements

UNIT-8:Functions: Arrays-OOP- String Manipulation and Regular

Expression-File Handling and Data Storage

UNIT-9: PHP and MySQL database: PHP and LDAP- PHP

Connectivity- Sending and Receiving E mails- Debugging and

Error Handling-Security-Templates

(Pages 67-82)

(Pages 83-107)

(Pages 108-125)

BLOCK 4: OPEN SOURCE PROGRAMMING LANGUAGE

PYTHON

UNIT-10: Syntax and Style-Python Objects-Numbers-Sequences-

Strings-Lists and Tuples-Dictionaries-Conditionals and Loops

UNIT-11: Files-Input and Output-Errors and Exceptions-

Functions-Modules-Classes and OOP-Execution Environment

(Pages 126-162)

(Pages 163-199)

SYLLABI

PAGE NUMBER

BLOCK 5: OPEN SOURCE PROGRAMMING LANGUAGE-

PERL

UNIT-12: Perl Backgrounder- Perl Overview-Perl Parsing rules-

Variables and Data-Statements

UNIT-13: Control Structures-Subroutines

UNIT-14: Packages and Modules- Working with Files- Data

Manipulation

(Pages 200-211)

(Pages 212-221)

(Pages 222-235)

MODEL QUESTION PAPER (Pages 236-237)

CONTENTS

BLOCK1: INTRODUCTION

UNIT 1 INTRODUCTION 1-7

1.0 Introduction

1.1 Objective

1.2 Software Terminologies

 1.2.1 Public Domain Software

1.2.2 Freeware

1.2.3 Shareware

1.2.4 Firmware

1.2.5 Proprietary Software

1.2.6 Open Source Software

1.3 Need of Open Sources

1.4 Advantages of Open Sources

1.5 Applications of Open sources

1.6 Answers to Check Your Progress

1.7 Summary

1.8 Keywords

1.9 Self Assessment Questions and Exercises

1.10 Further Readings

UNIT 2 OPEN SOURCE OPERATING SYSTEMS 8-17

2.0 Introduction

2.1 Objective

2.2 Open Source Operating System

2.3 General Overview

2.4 Kernel Mode

2.5 User Mode

2.6 Process

2.6.1 Creating Processes

2.6.2 Destroying Processes

2.6.3 Process Removal

2.7 Answers to Check Your Progress

2.8 Summary

2.9 Keywords

2.10 Self Assessment Questions and Exercises

2.11 Further Readings

UNIT 3 ADVANCED CONCEPTS 18-30

3.0 Introduction

3.1 Objective

3.2 Scheduling Concepts

3.2.1Scheduling Policy

3.2.2 Process Pre-emption

3.2.3 The Scheduling Algorithm

3.3 Signals

3.3.1 Process

3.3.2 Sending a Signal

3.3.3 Receiving Signals

3.4 Process

3.5 Cloning

3.6 Personalities

3.7 Development with Linux

3. 8 Answers to Check Your Progress

3.9 Summary

3.10 Keywords

3.11 Self Assessment Questions and Exercises

3.12 Further Readings

BLOCK II: OPEN SOURCE DATABASE

UNIT 4 MySQL 31-40

4.0 Introduction

4.1 Introduction

4.2 MySQL

4.3 Setting up Account

4.4 Starting, terminating and writing your Own SQL programs

4.4.1 Connecting to the MySQL Server

4.5 Answers to Check Your Progress

4.6 Summary

4.7 Keywords

4.8 Self Assessment Questions and Exercises

4.9 Further Readings

UNIT 5 RECORD SELECTION TECHNOLOGY 41-55

5.0 Introduction

5.1 Objective

5.2 Record selection Technology

5.3 Working with Strings

5.4 Date and Time Functions

5.5 Answers to Check Your Progress

5.6 Summary

5.7 Keywords

5.8 Self Assessment Questions and Exercises

5.9 Further Readings

UNIT 6 WORKING WITH SQL 56-66

6.0 Introduction

6.1 Objective

6.2 Sorting query Results

6.3 Generating Summary

6.4 Working with Metadata

6.4.1 Types of Metadata

6.4.2 Obtaining Metadata with SHOW

6.4.3 Obtaining Metadata with INFORMATION_SCHEMA

6.5 Using Sequences

6.5.1Creating a Sequence

6.5.2 Dropping a Sequence

6.6 My SQL and Web

6.6.1 Basic Web Page Generation

6.7 Answers to Check Your Progress

6.8 Summary

6.9 Keywords

6.10 Self Assessment Questions and Exercises

6.11 Further Readings

BLOCK 3: OPEN SOURCE PROGRAMMING LANGUAGE PHP

UNIT 7 PHP 67-82

7.0 Introduction

7.1 Objective

7.2 PHP

7.2.1 Common uses of PHP

7.2.2 Characteristics of PHP

7.3 Programming in Web Environment

7.4 PHP Variables

7.4.1 Variable Scope

7.5 Constants

7.5.1 PHP Magic constants

7.6 Data Types

7.6.1 Integers

7.6.2 Doubles

7.6.3Boolean

7.6.4 NULL

7.6.5 Strings

7.6.6 Arrays

7.7 Operators

7.7.1Arithmetic Operators

7.7.2 Comparison Operators

7.7.3 Logical Operators

7.7.4 Assignment Operators

7.7.5 Conditional Operator

7.7.6 Operators Categories

7.7.7 Precedence of PHP Operators

7.8 Statement

7.9 Answers to Check Your Progress

7.10 Summary

7.11 Keywords

7.12 Self Assessment Questions and Exercises

7.13 Further Readings

UNIT 8 FUNCTIONS 83-107

8.0 Introduction

8.1 Objective

8.2 Functions

8.2.1 Creating PHP Function

8.2.2 PHP Functions with Parameters

8.2.3 Passing Arguments by Reference

8.2.4 PHP Functions Returning Value

8.2.5 Setting Default Values for Function Parameter

8.2.6 Dynamic Function Calls

8.3 Arrays

8.3.1 Numeric Array

8.3.2 Associative Arrays

8.3.3 Multidimensional Arrays

8.4 Object Oriented Concepts

8.4.1 Defining PHP Classes

8.4.2 Creating Objects in PHP

8.4.3 Calling Member Functions

8.4.4 Constructor Functions

8.4.5 Function Overriding

8.4.6 Interfaces

8.5 String Manipulation and Regular Expression

8.5.1 String Concatenation Operator

8.6 File Handling and Data Storage

8.6.1 The include() Function

8.6.2 The require() Function

8.7 Answers to Check Your Progress

8.8 Summary

8.9 Keywords

8.10 Self Assessment Questions and Exercises

8.11 Further Readings

UNIT 9 PHP AND MySQL DATABASE 108-125

9.0 Introduction

9.1 Objective

9.2 PHP and MySQL

9.2.1 Connecting to the MySQL Server

9.2.2 Web Interface with Apache, MySQL, and PHP

9.3 PHP and LDAP

9.4 PHP Connectivity

9.5 Sending and Receiving E-mails

9.5.1 Sending HTML email

9.5.2 Sending Attachments with Email

9.6 Debugging and Error Handling

9.6.1 Defining Custom Error Handling Function

9.6.2 Possible Error levels

9.6.3 Exceptions Handling

9.7 Templates

9.8 Answers to Check Your Progress

9.9 Summary

9.10 Keywords

9.11 Self Assessment Questions and Exercises

9.12 Further Readings

BLOCK: 4 OPEN SOURCE PROGRAMMING LANGUAGE PYTHON

UNIT 10 SYNTAX AND STYLE 126-162

10.0 Introduction

10.1 Objective

10.2 Syntax and Style

10.3 Creating an Object in Python

10.4 Python Numbers

10.5 Sequence

10.6 Strings

10.7 Lists

10.7.1 Creating List

10.7.2 List Slices

10.7.3 List Methods

10.7.4 List Loop

10.7.5 List Mutability

10.7.6 List Aliasing

10.7.7 Cloning a List

10.7.8 Deleting List values

10.7.9 Basic List Operations

10.7.10 Advanced List Processing

10.8 Tuples: Tuple Assignment, Tuple as Return Value

10.8.1 Tuple Creation

10.8.2 Tuple Slicing or Accessing Values in Tuples

10.8.3 Tuple Mutability or Updating Tuples

10.8.4 Delete Tuple Elements

10.8.5 Basic Tuples Operations

10.8.6 Indexing, Slicing and Matrixes

10.8.7 No Enclosing Delimiters

10.8.8 Built-in Tuple Functions

10.9 Dictionary

10.9.1 Accessing Values in Dictionary

10.9.2 Updating Dictionary

10.9.3 Delete Dictionary Elements

10.9.4 Properties of Dictionary Keys

10.9.5 Built-in Dictionary Functions & Methods

10.9.6 Methods

10.10 Control Flow

10.10.1 if statement

10.10.2 if…else statement

10.10.3 if…elif…else statement

10.10.4 Nested if statement:

10.11 Iteration (Looping Statements)

10.11.1 While statement

10.11.2 Nested while loop

10.11.3 Using else statement with while loops

10.11.4. The Infinite while Loop

10.11.5 for loop

10.11.6 Nested for loop

10.11.7 Using else statement with for loops

10.11.8 for loop using Range

10.11.9 for loop using variable name

10.12 Answers to Check Your Progress

10.13 Summary

10.14 Keywords

10.15 Self Assessment Questions and Exercises

10.16 Further Readings

UNIT -11 FILES 163-199

11.0 Introduction

11.1 Objective

11.2 Files

11.2.1 Types of File

11.2.1.1 Text File

11.2.1.2 Binary File

11.3 File Modes

11.3.1 File Object Attributes

11.3.2 Opening and Closing a File

11.3.3 Reading and Writing a File

11.3.4 The append()

11.3.5 File Positions

11.4 Errors and Exceptions

11.4.1 Errors

11.4.2 Parts in an Error Message

11.4.3 Built-In Exceptions

11.4.4 Exceptions

11.4.5 Error Messages that are Displayed for the Following Exceptions

11.5 Handling an Exception

11.5.1 except Clause with No Exceptions

11.5.2 Handling Multiple Exceptions

11.5.3 The except Clause with Multiple Exceptions

11.5.4 Handling an Exception by Try/Except/Else Clause

11.5.5 Handling an Exception by Try/Except/Finally Clause

11.5.6 Raising an Exceptions

11.5.7 User-Defined Exceptions

11.6 Functions

11.7 Parameters

11.8 Arguments

11.9 Fruitful Function

11.10 Variable Scope and Lifetime

11.11 Function Recursion

11.12 Modules and Packages

11.12.1 Modules

11.12.1.1 The import Statement

11.12.1.2 Standard Modules

11.13 Classes and OOP

11.13.1 Defining a Class in Python

11.14 Execution Environment

11.15 Answers to Check Your Progress

11.16 Summary

11.17 Keywords

11.18 Self Assessment Questions and Exercises

11.19 Further Readings

BLOCK 5: OPEN SOURCE PROGRAMMING LANGUAGE-PERL

UNIT 12 PERL 200-211

12.0 Introduction

12.1 Objective

12.2 Perl Backgrounder

12.3 Perl Overview

12.4 Parsing rules

12.5 Variables

12.5.1 Creating Variables

12.5.2 Scalar Variables

12.5.3 Array Variables

12.5.4 Hash Variables

12.5.5 Variable Context

12.6 Datatypes

12.7 Answers to Check Your Progress

12.8 Summary

12.9 Keywords

12.10 Self Assessment Questions and Exercises

12.11 Further Readings

UNIT 13 CONTROL STRUCTURES 202 -221

13.0 Introduction

13.1 Objective

13.2 Control Structures

13.2.1 Decision Making Statements in Perl

13.3 Subroutines

13.3.1 Define and Call a Subroutine

13.3.2 Passing Arguments to a Subroutine

13.3.3 Passing Lists to Subroutines

13.3.4 Passing Hashes to Subroutines

13.3.5 Returning Value from a Subroutine

13.4 Answers to Check Your Progress

13.5 Summary

13.6 Keywords

13.7 Self Assessment Questions and Exercises

13.8 Further Readings

UNIT 14 PACKAGES AND MODULES 222-235

14.0 Introduction

14.1 Objective

14.2 Packages

14.3 Modules

14.3.1Create the Perl Module Tree

14.3.2 Installing Perl Module

14.4 Working with Files

14.4.1 Opening and Closing Files

14.4.2 Close Function

14.5 Data Manipulation

14.6 Answers to Check Your Progress

14.7 Summary

14.8 Keywords

14.9 Self Assessment Questions and Exercises

14.10 Further Readings

MODEL QUESTION PAPER 236-237

1

Introduction

NOTES

Self-Instructional Material

BLOCK - I

UNIT - 1 INTRODUCTION

Structure

1.0 Introduction

1.1 Objective

1.2 Software Terminologies

1.2.1 Public Domain Software

1.2.2 Freeware

1.2.3 Shareware

1.2.4 Firmware

1.2.5 Proprietary Software

1.2.6 Open Source Software

1.3 Need of Open Sources

1.4 Advantages of Open Sources

1.5 Applications of Open sources

1.6 Answers to Check Your Progress

1.7 Summary

1.8 Keywords

1.9 Self Assessment Questions and Exercises

1.10 Further Readings

1.0 INTRODUCTION

This unit explains the open source software concepts and basics of the

system with which we work .The applications and need of this software and

how it is freely available is discussed.

1.1 OBJECTIVE

This unit briefs the open source software needs and makes the user to

understand and learn the following concepts

 Need of open sources

 Applications

 Advantages

1.2 SOFTWARE TERMINOLOGIES

Some of the common terms used in the field of software.

2

Introduction

NOTES

Self-Instructional Material

1.2.1 Public Domain Software

Public domain software refers to any program that is not copy righted. This

software is free and can be used without restrictions, that is, the user can

copy, distribute, and even modify the software without obtaining permission

from the software developer.

1.2.2 Freeware

The term freeware is commonly used for copyrighted software given away

free by its author. It is available for free but the author retains the copyright,

which means that a user does not have the right to modify anything in the

software that is not explicitly allowed by the developer. Thus, freeware

software permits re-distribution but not modification.

1.2.3 Shareware

Shareware is the software which comes with permission for people to

redistribute copies for a limited period. Anyone who continues to use a copy

is required to pay a license fee. Therefore, a free use of the software is

usually limited to a period. It is distributed without payment ahead of time.

1.2.4 Firmware

Firmware is a combination of software, permanently stored in the memory.

As the name suggests, firmware is a program or data that has been written

onto read only memory (ROM).

1.2.5 Proprietary Software

Proprietary describes a technology or product that is owned exclusively by a

single company that carefully guards knowledge about the technology or the

product’s internal working. Proprietary software is also called as Closed

Source Software. Its use, redistribution or modification is prohibited or is

restricted so much that the user effectively cannot use it freely.

1.2.6 Open Source Software

It is created by generous programmers and released into the public domain

for public use. The underlying programming code is available to the users so

that they may read it, make changes to it, and build new versions of the

software incorporating their changes for software. Usually this software is

distributed under an open source license-GPL.

Open source doesn't just mean access to the source code. The distribution

terms of open-source software must obey with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the

software as a component of an aggregate software distribution containing

programs from several different sources. The license shall not require a

royalty or other fee for such sale

3

Introduction

NOTES

Self-Instructional Material

 2. Source Code

The program must include source code, and must allow distribution in source

code as well as compiled form. Where some form of a product is not

distributed with source code, there must be a well-publicized means of

obtaining the source code for no more than a reasonable reproduction cost

preferably, downloading via the Internet without charge. The source code

must be the preferred form in which a programmer would modify the

program. Deliberately obfuscated source code is not allowed. Intermediate

forms such as the output of a preprocessor or translator are not allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow

them to be distributed under the same terms as the license of the original

software.

4. Integrity of the Author's Source Code

The license may restrict source-code from being distributed in modified form

only if the license allows the distribution of "patch files" with the source

code for the purpose of modifying the program at build time. The license

must explicitly permit distribution of software built from modified source

code. The license may require derived works to carry a different name or

version number from the original software.

5. No Discrimination against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination against Fields of Endeavor

The license must not restrict anyone from making use of the program in a

specific field of endeavor. For example, it may not restrict the program from

being used in a business, or from being used for genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is

redistributed without the need for execution of an additional license by those

parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being

part of a particular software distribution. If the program is extracted from

that distribution and used or distributed within the terms of the program's

license, all parties to whom the program is redistributed should have the

same rights as those that are granted in conjunction with the original

software distribution.

4

Introduction

NOTES

Self-Instructional Material

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed

along with the licensed software. For example, the license must not insist

that all other programs distributed on the same medium must be open-source

software.

10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology

or style of interface.

1.3 NEED OF OPEN SOURCES

The name “FOSS” is a recursive acronym for “Free Open Source Software”.

Free software is a matter of the users’ freedom to run, copy, distribute, study,

change and improve the software. More precisely, it refers to four kinds of

freedom, for the users of the software:

1. The freedom to run the program, for any purpose

2. The freedom to study how the program works, and change it to make it do

what you wish.

3. The freedom to redistribute copies so you can help your neighbour.

4. The freedom to improve the program, and release your improvements (and

modified versions in general) to the public, so that the whole community

benefits.

Free software is software that gives you the user the freedom to share study

and modify it. We call this free software because the user is free. To use free

software is to make a political and ethical choice asserting the right to learn,

and share what we learn with others. Free software has become the

foundation of a learning society where we share our knowledge in a way that

others can build upon and enjoy.

Currently, many people use proprietary software that denies users these

freedoms and benefits. If we make a copy and give it to a friend, if we try to

figure out how the program works, if we put a copy on more than one of our

own computers in our own home, we could be caught and fined or put in jail.

That’s what’s in the fine print of the license agreement you accept when

using proprietary software.

The corporations behind proprietary software will often spy on your

activities and restrict you from sharing with others. And because our

computers control much of our personal information and daily activities,

proprietary software represents an unacceptable danger to a free society.

1.4 ADVANTAGES OF OPEN SOURCES

· Reliability

· Security

5

Introduction

NOTES

Self-Instructional Material

· Combats Piracy

· Total Cost of Ownership

· Non Quantitative Issues

· Freedom from control by another

· Protection from licensing litigation

· Flexibility

· Social/Moral/Ethical Issues

· Innovation

1.5 APPLICATIONS OF OPEN SOURCES

 Active user groups of GNU/Linux in various Indian cities

 Goa Schools Computers Project – GSCP – A collaborative effort

 Localisation of GNU/Linux in Tamil, Hindi, Gujrathi, Bengali and

Punjabi

 Contributions to KDE, GNOME

 Anjuta -IDE for C & C++ on GNU/Linux by Naba Kumar

 Mayavi – Scientific Data Visualizer

 KGDB – Kernel patch to debug the Linux Kernel

 National Resource Center for Free Open Source Software-

(NRCFOSS) jointly implemented by AU-KBC Centre, MIT Campus.

Check your Progress

1. What is Public Domain Software?

2. What is Freeware?

3. What is Firmware?

4. What is FOSS?

5. What arean Advantages of Open Sources?

1.6. ANSWERS TO CHECK YOUR PROGRESS

1. Public domain software refers to any program that is not copy

righted. This software is free and can be used without restrictions,

that is, the user can copy, distribute, and even modify the software

without obtaining permission from the software developer.

2. The term freeware is commonly used for copyrighted software given

away free by its author. It is available for free but the author retains

the copyright, which means that a user does not have the right to

modify anything in the software that is not explicitly allowed by the

developer.

6

Introduction

NOTES

Self-Instructional Material

3. Firmware is a combination of software, permanently stored in the

memory. As the name suggests, firmware is a program or data that

has been written onto read only memory (ROM).

4. The name “FOSS” is a recursive acronym for “Free Open Source

Software”. Free software is a matter of the users’ freedom to run,

copy, distribute, study, change and improve the software.

5. Some of advantages are:

 Reliability

 Security

 Combats Piracy

 Total Cost of Ownership

 Non-Quantitative Issues

 Freedom from control by another

 Protection from licensing litigation

 Flexibility

 Social/Moral/Ethical Issues

 Innovation

1.7. SUMMARY

 Firmware is a combination of software, permanently stored in the

memory. As the name suggests, firmware is a program or data that

has been written onto read only memory (ROM).

 Proprietary describes a technology or product that is owned

exclusively by a single company that carefully guards knowledge

about the technology or the product’s internal working.

 The program must include source code, and must allow distribution

in source code as well as compiled form.

 The rights attached to the program must apply to all to whom the

program is redistributed without the need for execution of an

additional license by those parties.

1.8. KEYWORDS

FOSS: The name “FOSS” is a recursive acronym for “Free Open Source

Software”. Free software is a matter of the users’ freedom to run, copy,

distribute, study, change and improve the software.

Free software: Free software is software that gives you the user the freedom

to share study and modify it.

Free Redistribution: The license shall not restrict any party from selling or

giving away the software as a component of an aggregate software

distribution containing programs from several different sources.

7

Introduction

NOTES

Self-Instructional Material

1.9. SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. What is Distribution of License?

2. What is Shareware?

3. What is Proprietary Software?

4. What are the needs of open source?

5. What are applications of open source?

Long Answer questions:

1. Explain briefly about open sources and its advantages?

2. Explain about Need of open sources?

3. What are Software terminologies?

1.10. FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

8

Self-Instructional Material

Open Source Operating

Systems

NOTES

UNIT- 2

OPEN SOURCE OPERATING SYSTEMS

Structure

2.0 Introduction

2.1 Objective

2.2 Open Source Operating System

2.3 General Overview

2.4 Kernel Mode

2.5 User Mode

2.6 Process

 2.6.1 Creating Processes

 2.6.2 Destroying Processes

 2.6.3 Process Removal

2.7 Answers to Check Your Progress

2.8 Summary

2.9 Keywords

2.10 Self Assessment Questions and Exercises

2.11 Further Readings

2.0 INTRODUCTION

This unit briefs the open source operating system Linux with its general

overview of how its available and its usage and working mode are explained,

2.1OBJECTIVE

This unit helps the users to understand linx by

 Learning the overview of Linux

 User and Kernel Mode

 Process in Linux

2.2 OPEN SOURCE OPERATING SYSTEM

Linux

Linus Torvalds [Matt Welsh], a student at the University of Helsinki, created

the first version of “Linux” in August 1991. Released as an open-source

software under the Free Software Foundation's GNU General Public License

(GPL), Linux quickly grew into a complete operating-system package, with

contributions from hundreds of programmers. Since the release of version

1.0 in 1994, organizations have been able to download free copies of Linux.

One could also purchase commercial distributions of Linux from companies

9

Open Source Operating

Systems

NOTES

Self-Instructional Material

such as Slackware, Red 3 Hat etc who also provide consultancy, services,

and maintenance [Carla Schroder]. Many people raise a question about

Linux “if it's released under the Free Software Foundation's GPL, shouldn't it

be free?”. The answer is no. A company can charge money for products that

include Linux, as long as the source code is made available. The GPL allows

people to distribute (and charge for) their own versions of free software

[Carla Schroder]. According to the Free Software Foundation, the "free" in

free software refers to freedom or liberty, not price. In the foundation's

definition, organizations have the freedom to run software for any purpose,

study how it works, modify, improve and re-release it.

Another common misconception about Linux is that it's a complete operating

system. In reality Linux refers to the “ kernel or core ” of the operating

system. Combining Linux with a set of open-source GNU programs from the

Free Software Foundation turns it into what most people know as Linux

”forming both the full operating system and the core of most Linux

distributions”. Distributions are the versions of Linux, GNU programs, and

other tools that are offered by different companies, organizations, or

individuals. Popular distributions include Red Hat, Debian, SuSE, Caldera,

and others. Each distribution might be based on a different version of the

Linux kernel, but all migrate forward over time, picking up core changes that

are made to the kernel and keeping everything in somewhat loose

synchronization.

Eric S. Raymond's famous essay, "The Cathedral and the Bazaar," argues

that most commercial software is built like cathedrals by small groups of

artisans working in isolation. Open-source software, like Linux, is developed

collectively over the Internet, which serves as an electronic bazaar for

innovative ideas. The first of the two programming styles is closed source –

the traditional factory-production model of proprietary software, in which

customers get a sealed block of computer binary that they cannot examine,

modify, or evolve. The other style is opensource, the Internet engineering

tradition in which software source code is generally available for inspection,

independent peer review, and rapid evolution. Linux operating environment

is the standard-bearer of the open source approach.

With Open Source products like Linux, new changes come through an open

development model, meaning that all new versions are available to the

public, regardless of their quality. "Linux' s versioning scheme is designed to

let users understand whether they're using a stable version or adevelopment

version," says Jim Enright, director of Oracle's Linux program office. "Even

decimal-numbered releases [such as 2.0, 2.2, and 2.4] are considered stable

versions, while odd numbered releases [such as 2.3 and 2.5] are beta-quality

releases intended for developers only." For much of the 1990s, Linux was

primarily an experiment: something that developers fiddled with and used on

local servers to see how well it worked and how secure it was. Then, with the

internet boom of the late 1990s, many companies started using Linux for

their Web servers, fueling the first wave of corporate Linux adoption leading

to over 30 percent penetration of web server market by 2002.

10

Self-Instructional Material

Open Source Operating

Systems

NOTES

Open source movement today is no more about just Linux, there are

hundreds of thousands of software products being worked on in the

Free/Open Source Software (FOSS) mode—Apache, MySQL, Postgres,

Firefox ,Jboss etc are some of the other popular members of this growing

family who have proved themselves in the real world. Also, its influence is

no more confined to CSE/IT areas alone; Open Source solutions are today

available for many of the simulation, computing, design and visualization

needs of the entire Scientific and Engineering community. It is for reasons

such as the above that most of the major global players in the computing

arena 4such as IBM, Intel, Oracle, HP etc all have started their own in-house

FOSS initiatives.

2.3 GENERAL OVERVIEW

Here are some of the benefits and features that Linux provides over single-

user operating systems and other versions of UNIX for the PC.

• Full multitasking and 32-bit support : Linux, like all other versions of

UNIX, is a real multitasking system, allowing multiple users to run many

programs on the same system at once. The performance of a 50 MHz 486

system running Linux is comparable to many low- to medium-end

workstations, such as those from Sun Microsystems and DEC, running

proprietary versions of UNIX. Linux is also a full 32-bit operating system,

utilizing the special protected-mode features of the Intel 80386 and 80486

processors.

• GNU software support : Linux supports a wide range of free software

written by the GNU Project, including utilities such as the GNU C and C++

compiler, gawk, groff, and so on. Many of the essential system utilities used

by Linux are GNU software.

• The X Window System : The X Window System is the de facto industry

standard graphics system for UNIX machines. A free version of The X

Window System (known as “Xfree86”) is available for Linux. The X

Window System is a very powerful graphics interface, supporting many

applications. For example, one can have multiple login sessions in different

windows on the screen at once. Other examples of X Windows applications

are Seyon, a powerful telecommunications program; Ghostscript, a

PostScript language processor; and XTetris, an X Windows version of the

popular game.

• TCP/IP networking support : TCP/IP (“Transmission Control

Protocol/Internet Protocol”) is the set of protocols which links millions of

computers into a worldwide network known as the Internet. With an Ethernet

connection, one can have access to the Internet or to a local area network

from your Linux system. Or, using SLIP (“Serial Line Internet Protocol”),

you can access the Internet over the phone lines with a modem.

• Virtual memory and shared libraries: Linux can use a portion of the hard

drive as virtual memory, expanding the total amount of available RAM.

Linux also implements shared libraries, allowing programs which use

11

Open Source Operating

Systems

NOTES

Self-Instructional Material

standard subroutines to find the code for these subroutines in the libraries at

runtime. This saves a large amount of space, as each application doesn't store

its own copy of these common routines.

Linux Distributions

Here are some of the more popular distributions of Linux.

* Mandrake

* Red Hat

* SuSE

* Caldera

* Corel

* Debian

* Slackware

* TurboLinux

* Ubuntu

2.4 KERNEL MODE

The system starts in kernel mode when it boots and after the operating

system is loaded, it executes applications in user mode. There are some

privileged instructions that can only be executed in kernel mode. These are

interrupt instructions, input output management etc. If the privileged

instructions are executed in user mode, it is illegal and a trap is generated.

The mode bit is set to 0 in the kernel mode. It is changed from 0 to 1 when

switching from kernel mode to user mode

2.5 USER MODE

The system is in user mode when the operating system is running a user

application such as handling a text editor. The transition from user mode to

kernel mode occurs when the application requests the help of operating

system or an interrupt or a system call occurs. The mode bit is set to 1 in the

user mode. It is changed from 1 to 0 when switching from user mode to

kernel mode.

12

Self-Instructional Material

Open Source Operating

Systems

NOTES

Necessity of Dual Mode (User Mode and Kernel Mode) in Operating

System

The lack of a dual mode i.e user mode and kernel mode in an operating

system can cause serious problems. Some of these are: A running user

program can accidentally wipe out the operating system by overwriting it

with user data. Multiple processes can write in the same system at the same

time, with disastrous results. These problems could have occurred in the MS-

DOS operating system which had no mode bit and so no dual mod

2.6 PROCESS

A process is usually defined as an instance of a program in execution; thus, if

16 users are running vi at once, there are 16 separate processes..

Process Descriptor

To manage processes, the kernel must know the process's priority, whether it

is running on the CPU or blocked on some event, what address space has

been assigned to it and so on. This is the role of the process descriptor, that

is, of a task_struct type

Process State

The following are the possible process states:

TASK_RUNNING The process is either executing on the CPU or waiting to

be executed.

TASK_INTERRUPTIBLE The process is suspended (sleeping) until some

condition becomes true.

TASK_UNINTERRUPTIBLE like previous state, except that delivering a

signal to the sleeping process leaves its state unchanged.

TASK_STOPPED Process execution has been stopped:

The process list To allow an efficient search through processes of a given

type the kernel creates several lists of processes. Each list consists of

pointers to process descriptors

2.6.1 Creating Processes

The clone(), fork(), and vfork() System Calls

Lightweight processes are created in Linux by using a function named

__clone(), which makes use of four parameters:

fn: Specifies a function to be executed by the new process; when the

function returns, the child terminates.

Arg: Pointer to data passed to the fn() function.

Flags: Miscellaneous information.

13

Open Source Operating

Systems

NOTES

Self-Instructional Material

child_stack Specifies the User Mode stack pointer to be assigned to the esp

register of the child

The kernel invokes the do_fork() function, which executes the following

steps:

1. If the CLONE_PID flag has been specified, the do_fork() function checks

whether the PID of the parent process is not null; if so, it returns an error

code.

2. The alloc_task_struct() function is invoked in order to get a new 8 KB

union task_union memory area to store the process descriptor and the Kernel

Mode stack of the new process.

3. The function follows the current pointer to obtain the parent process

descriptor and copies it into the new process descriptor in the memory area

just allocated.

4. A few checks occur to make sure the user has the resources necessary to

start a new process. First, the function checks whether

current>rlim[RLIMIT_NPROC] if so, an error code is returned.

5. The find_empty_process() function is invoked. This function checks

whether nr_tasks is smaller 2 than NR_TASKS-

MIN_TASKS_LEFT_FOR_ROOT. If so, it invokes get_free_taskslot() to

find a free entry in the task array. Otherwise, it returns an error.

6. The function writes the new process descriptor pointer into the previously

obtained task entry and sets the tarray_ptr field of the process descriptor to

the address of that entry

7. Now the function has taken almost everything that it can use from the

parent process; the rest of its activities focus on setting up new resources in

the child. First, the function invokes the get_pid() function to obtain a new

PID, which will be assigned to the child process

8. The function then updates all the process descriptor fields that cannot be

inherited from the parent process.

9. It invokes copy_thread() to initialize the Kernel Mode stack of the child

process with the values contained in the CPU registers when the clone() call

was issued

10. It uses the SET_LINKS macro to insert the new process descriptor in the

process list.

11. It uses the hash_pid() function to insert the new process descriptor in the

pidhash hash table.

12. It increments the values of nr_tasks and current->user->count.

13. It sets the state field of the child process descriptor to TASK_RUNNING

and then invokes sake_up_process() to insert the child in the runqueue list.

14

Self-Instructional Material

Open Source Operating

Systems

NOTES

14. If the CLONE_VFORK flag has been specified, the function suspends

the parent process until the child releases its memory address space. In order

to do this, the process descriptor includes a kernel semaphore called

vfork_sem

15. It returns the PID of the child, which will be eventually be read by the

parent process in User Mode. Now we have a complete child process in the

runnable state. The child process will execute the same code as the parent,

except that the fork will return a null PID.

2.6.2 Destroying Processes

Process Termination

All process terminations are handled by the do_exit() function, which

removes most references to the terminating process from kernel data

structures. The do_exit() function executes the following actions:

1. Sets the PF_EXITING flag in the flag field of the process descriptor to

denote that the process is being eliminated.

2. Examines the process's data structures related to paging, filesystem, open

file descriptors, and signal handling, respectively, with the __exit_mm(),

__exit_files(), __exit_fs(), and _ _exit_sighand() functions.

3. Sets the state field of the process descriptor to TASK_ZOMBIE.

4. Sets the exit_code field of the process descriptor to the process

termination code.

5. Invokes the exit_notify() function to update the parenthood relationships

of both the parent process and the children processes.

6. Invokes the schedule() function to select a new process to run. Since a

process in a TASK_ZOMBIE state is ignored by the scheduler, the process

will stop executing right after the switch_to macro in schedule() is invoked.

2.6.3 Process Removal

The release() function releases the process descriptor of a zombie process by

executing the following steps:

1. Invokes the free_uid() function to decrement by 1 the number of

processes created up to now by 3 the user owner of the terminated process.

2. Invokes add_free_taskslot() to free the entry in task that points to the

process descriptor to be released.

3. Decrements the value of the nr_tasks variable.

4. Invokes unhash_pid() to remove the process descriptor from the pidhash

hash table.

15

Open Source Operating

Systems

NOTES

Self-Instructional Material

5. Uses the REMOVE_LINKS macro to unlink the process descriptor from

the process list.

6. Invokes the free_task_struct() function to release the 8 KB memory area

used to contain the process descriptor and the Kernel Mode stack.

Check your Progress

1. What are the distributions of Linux?

2. What is Kernel Mode?

3. What is User Mode?

4. What are the two different Styles of Programming?

5. State the Necessity of Dual Mode in Operating

2.7 ANSWERS TO CHECK YOUR PROGRESS

1. Some of the more popular distributions of Linux are:

 Mandrake

 Red Hat

 SuSE

 Caldera

 Corel

 Debian

 Slackware

 TurboLinux

 Ubuntu

2. The system starts in kernel mode when it boots and after the operating

system is loaded, it executes applications in user mode. There are some

privileged instructions that can only be executed in kernel mode. These

are interrupt instructions, input output management etc. If the privileged

instructions are executed in user mode, it is illegal and a trap is

generated. The mode bit is set to 0 in the kernel mode. It is changed from

0 to 1 when switching from kernel mode to user mode.

3. The system is in user mode when the operating system is running a user

application such as handling a text editor. The transition from user mode

to kernel mode occurs when the application requests the help of

operating system or an interrupt or a system call occurs. The mode bit is

set to 1 in the user mode. It is changed from 1 to 0 when switching from

user mode to kernel mode.

4. The first of the two programming styles is closed source – the traditional

factory-production model of proprietary software, in which customers get

a sealed block of computer binary that they cannot examine, modify, or

evolve. The other style is opensource, the Internet engineering tradition

16

Self-Instructional Material

Open Source Operating

Systems

NOTES

in which software source code is generally available for inspection,

independent peer review, and rapid evolution.

5. The lack of a dual mode i.e. user mode and kernel mode in an operating

system can cause serious problems. Some of these are: A running user

program can accidentally wipe out the operating system by overwriting it

with user data. Multiple processes can write in the same system at the

same time, with disastrous results. E.g., These problems could have

occurred in the MS-DOS operating system which had no mode bit and so

no dual mode.

2.8 SUMMARY
 Open-source software, like Linux, is developed collectively over the

Internet, which serves as an electronic bazaar for innovative ideas.

 Linux, like all other versions of UNIX, is a real multitasking system,

allowing multiple users to run many programs on the same system at

once.

 The system starts in kernel mode when it boots and after the operating

system is loaded, it executes applications in user mode.

 The system is in user mode when the operating system is running a user

application such as handling a text editor.

2.9 KEYWORDS

GNU software support : Linux supports a wide range of free software

written by the GNU Project, including utilities such as the GNU C and C++

compiler, gawk, groff, and so on.

X Window System : The X Window System is the de facto industry

standard graphics system for UNIX machines. A free version of The X

Window System (known as “Xfree86”) is available for Linux.

Virtual memory and shared libraries: Linux also implements shared

libraries, allowing programs which use standard subroutines to find the code

for these subroutines in the libraries at runtime.

2.10 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. What is Virtual Memory and Shared Libraries? Mention the uses.

2. Write a short note on Process State

3. What is the Role of ProcessDescriptor?

4. What is Creating and Destroying in Process?

5. Write a short note on The X Window System?

Long Answer questions:

1. Explain about Process Creating and steps involved in it.

2. Explain briefly about Process Destroying and Process Removal.

17

Open Source Operating

Systems

NOTES

Self-Instructional Material

3. Explain and illustrate User Mode and Kernel Mode in Operating

system and its necessity.

2.11 FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition,

Tata McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

18

Self-Instructional Material

Advanced Concepts

NOTES

UNIT- 3 ADVANCED CONCEPTS

Structure

3.0 Introduction

3.1Objective

3.2 Scheduling Concepts

3.2.1Scheduling Policy

3.2.2 Process Pre-emption

3.2.3 The Scheduling Algorithm

3.3 Signals

3.3.1 Process

3.3.2 Sending a Signal

3.3.3 Receiving Signals

3.4 Process

3.5 Cloning

3.6 Personalities

3.7 Development with Linux

3. 8 Answers to Check Your Progress

3.9 Summary

3.10 Keywords

3.11 Self Assessment Questions and Exercises

3.12 Further Readings

3.0 INTRODUCTION

This unit explains the advanced concepts of open source software with linx

where the scheduling and signals are discussed briefly. The development of

the open source software Linux is also discussed

3.1 OBJECTIVE

This unit helps the users to understand the advance concepts such as

 Scheduling

 Cloning

 Personalities

 Signals

3.2 SCHEDULING CONCEPTS

3.2.1 Scheduling Policy

The scheduling algorithm of traditional UNIX operating systems must fulfil

several conflicting objectives: fast process response time, good throughput

19

Advanced Concepts

NOTES

Self-Instructional Material

for background jobs, avoidance of process starvation, reconciliation of the

needs of low- and high-priority processes, and so on. The set of rules used to

determine when and how selecting a new process to run is called scheduling

policy. Linux scheduling is based on the time-sharing technique several

processes are allowed to run "concurrently,"

3.2.2 Process Pre-emption

Linux processes are pre-emptive. If a process enters the TASK_RUNNING

state, the kernel checks whether its dynamic priority is greater than the

priority of the currently running the execution of current is interrupted and

the scheduler is invoked to select another process to run. Be aware that a pre-

empted process is not suspended, since it remains in the TASK_RUNNING

state; it simply no longer uses the CPU. The Linux kernel is not pre-emptive,

which means that a process can be pre-empted only while running in User

Mode

3.2.3 The Scheduling Algorithm

The Linux scheduling algorithm works by dividing the CPU time into

epochs. In a single epoch, every process has a specified time quantum whose

duration is computed when the epoch begins. The time quantum value is the

maximum CPU time portion assigned to the process in that epoch. When a

process has exhausted its time quantum, it is preempted and replaced by

another

runnable process. The epoch ends when all runnable processes have

exhausted their quantum.

The schedule() Function- schedule() implements the scheduler. Its

objective is to find a process in the run queue list and then assign the CPU to

it.

Direct invocation

The scheduler is invoked directly when the current process must be blocked

right away because the resource it needs is not available. In this case, the

kernel routine that wants to block it proceeds as follows:

1. Inserts current in the proper wait queue

2. Changes the state of current either to TASK_INTERRUPTIBLE or to

PROCESS TASK_UNINTERRUPTIBLE 4

3. Invokes schedule()

20

Self-Instructional Material

Advanced Concepts

NOTES

4. Checks if the resource is available; if not, goes to step 2

5. Once the resource is available, removes current from the wait queue

Lazy invocation

The scheduler can also be invoked in a lazy way by setting the need_resched

field of current to 1. Actions performed by schedule()

1. The schedule() function starts by running the functions left by other

kernel control paths in various queues. The function invokes

run_task_queue(&tq_scheduler); The function then executes all active

unmasked bottom halves.

2. Now comes the actual scheduling, and therefore a potential process

switch. The value of current is saved in the prev local variable. First, a check

is made to determine whether prev is a Round Robin real-time process that

has exhausted its quantum. If so, schedule() assigns a new quantum to prev

and puts it at the bottom of the runqueue list:

3. schedule() examines the state of prev. If it has nonblocked pending

signals and its state is TASK_INTERRUPTIBLE, the function wakes up the

process as Task_running.

4. If prev is not in the TASK_RUNNING state, prev must be removed from

the runqueue list:

5. Next, schedule() must select the process to be executed in the next time

quantum. To that the function scans the runqueue list. The objective is to

store in next the process descriptor pointer of the highest priority process.

schedule() repeatedly invokes the goodness() function on the runnable

processes to determine the best candidate:

6. A further check must be made at the exit of the loop to determine whether

c is 0. This occurs only when all the processes in the runqueue list have

exhausted their quantum

7. If a process other than prev has been selected, a process switch must take

place. Before performing it, however, the context_swtch field of kstat is

increased by 1 to update the statistics maintained by the kernel.

3.3 SIGNALS

A signal is a very short message that may be sent to a process or to a group

of processes. The only information given to the process is usually the

number identifying the signal. A set of macros whose names start with the

prefix SIG is used to identify signals; For example, the SIGCHLD macro

yields the identifier of the signal that is sent to a parent process when some

child stops or terminates.

Signals serve two main purposes:

 To make a process aware that a specific event has occurred

21

Advanced Concepts

NOTES

Self-Instructional Material

 To force a process to execute a signal handler function included in its

code

The kernel distinguishes two different phases related to signal transmission:

Signal sending The kernel updates the descriptor of the destination process to

represent that a new signal has been sent. Signal receiving The kernel forces

the destination process to react to the signal by changing its execution state

or by starting the execution of a specified signal handler or both. The

following factors must be taken into consideration:

• Signals are usually received only by the currently running process

• Signals of a given type may be selectively blocked by a process; in this

case, the process will not receive the signal until it removes the block.

3.3.1 Process

Actions Performed upon Receiving a Signal 5 There are three ways in which

a process can respond to a signal:

• Explicitly ignore the signal.

• Execute the default action associated with the signal

Abort

The process is destroyed. Dump The process is destroyed and a core file

containing its execution context is created.

Ignore

The signal is ignored. Stop- The process is stopped, that is, put in a

TASK_STOPPED state

Continue If the process is stopped (TASK_STOPPED), it is put into the

TASK_RUNNING

state. Catch the signal by invoking a corresponding signal-handler function.

3.3.2 Sending a Signal

When a signal is sent to a process, the kernel delivers it by invoking the

send_sig_info(), send_sig(),

force_sig(), or force_sig_info() functions.

The send_sig_info() and send_sig() Functions

The send_sig_info() function acts on three parameters:

Sig The signal number. Info Either the address of a siginfo_t table associated

with real-time signals or one of two special values. A pointer to the

descriptor of the destination process.

22

Self-Instructional Material

Advanced Concepts

NOTES

1. The send_sig_info() function starts by checking whether the parameters

are correct:

if (sig < 0 || sig > 64) return -EINVAL;

2. The function checks then if the signal is being sent by a User Mode

process.

3. If the signal is sent by a User Mode process, the function determines

whether the operation is allowed. If the sig parameter has the value 0, the

function returns immediately without sending any signal: since is not a valid

signal number. Some types of signals might nullify other pending signals for

the destination process.

4. Next, send_sig_info() checks whether the new signal can be handled

immediately.

If ignored_signal() returns 1, the siginfo_t table of the destination process

must not be Updated. If ignored_signal() returns 0, the phase of signal

receiving has to be deferred, therefore send_sig_info() may have to modify

the data structures of the destination process. Since standard signals are not

queued, send_sig_info() must check whether another instance of the same

signal is already pending, then leave its mark on the proper data structures of

the process descriptor. The sigaddset() function is invoked to set the proper

bit in t->signal. The t->sigpending flag is also set, unless the destination

process has blocked the sig signal. The function terminates in the usual way

by waking up.

3.3.3 Receiving Signals

The kernel checks whether there are nonblocked pending signals before

allowing a process to resume its execution in User Mode. This check is

performed in ret_from_intr() every time an interrupt or an exception has

been handled by the kernel routines. In order to handle the nonblocked

pending signals, the kernel invokes the do_signal() function, which receives

two parameters: Regs The address of the stack area

3.4 PROCESS

Oldest The address of a variable where the function is supposed to save the

bit mask array of 6 blocked signals. The heart of the do_signal() function

consists of a loop that repeatedly invokes dequeue_signal() until no more

nonblocked pending signals are left. The return code of dequeue_signal() is

stored in the signr local variable: if its value is 0, it means that all pending

signals have been handled and do_signal() can finish

Ignoring the Signal

When a received signal is explicitly ignored, the do_signal() function

normally just continues with a new execution of the loop and therefore

considers another pending signal. If the signal received is SIGCHLD, the

23

Advanced Concepts

NOTES

Self-Instructional Material

sys_wait4() service routine of the wait4() system call is invoked to force the

process to read information about its children.

Executing the Default Action for the Signal

If ka->sa.sa_handler is equal to SIG_DFL, do_signal() must perform the

default action of the signal. The only exception comes when the receiving

process is init, in which case the signal is discarded. The signals whose

default action is "stop" may stop the current process. In order to do this,

do_signal() sets the state of current to TASK_STOPPED and then invokes

the schedule() Function.

Catching the Signal

Figure illustrates the flow of execution of the functions involved in catching

a signal. A nonblocked signal is sent to a process. When an interrupt or

exception occurs, the process switches into Kernel Mode. Right before

returning to User Mode, the kernel executes the do_signal() function, which

in turn handles the signal and sets up the User Mode stack. When the process

switches again to User Mode, it starts executing the signal handler because

the handler's starting address was forced into the program counter. When that

function terminates, the return code placed on the User Mode stack by the

setup_frame() function is executed. This code invokes the sigreturn()

system call, whose service routine copies the hardware context of the normal

program in the Kernel Mode stack and restores the User Mode stack back to

its original state.When the system call terminates, the normal program can

thus resume its execution.

3.5 CLONING

A clone process is created, using primitive type clone, by duplicating its

parent process. But, unlike classical processes, it may share its context with

its parent.

The standard form of the clone function is as follows:

int clone(int (*fn)(), void *child stack, int flag, int nargs,…);

 The parameter fn is the pointer from the child process to the function

to be executed.

 The parameter child stack is the pointer to the zone of memory

allocated for the stack of child process. The parameter Flags defines

method for cloning.

 The parameter nargs defines the number of arguments to be passed to

the function pointed by fn and is followed by these arguments

However, it is not necessary to have the source code in order to make a clone

of a program. In fact, having access to the source code can be undesirable

because it could subconsciously influence a programmer and result in

imitation of part of the code rather than creating entirely original code. A

24

Self-Instructional Material

Advanced Concepts

NOTES

variety of techniques have been developed for cloning software, including

reimplementation from official documentation accompanying the software

and from unofficial documentation. Reverse engineering becomes

particularly important when the documentation is incomplete, which is often

the case. Among the ways in which reverse engineering can be accomplished

are through observation of information exchange, disassembly using a

disassembler and decompilation using a decompiler. A compiler converts

source code into machine language, which can be read directly by a

computer's CPU (central processing unit); a decompiler attempts to convert

machine language back into source code. An assembler is a program that

translates an assembly language (which is a very low level language close to

machine language) into machine language.

There are several reasons for cloning software. One is that it is a way of

avoiding the high licensing fees and severe restrictions on use that typically

exist for proprietary (i.e., commercial) software. These include the lack of

availability of the source code and prohibitions on reverse engineering, and

thus a consequent lack of ability to study, modify or improve the software. A

second is that it is a way of making new software that is compatible with

existing software. In addition, some programmers regard it as a challenge or

a hobby.Cloning can be legal if there is no violation of the copyright of the

original software. There can be no such violation if the source code is not

available.

Copyright is the power granted by a government to the creator of a creative

work (e.g., the source code for a program, a magazine article, a poem, a

painting or a musical composition) that gives that creator the exclusive,

although transferable, right to copy or perform that work for a defined period

of time. Copyrights do not protect facts, discoveries, inventions, ideas or

methods of operation; they only protect the specific way in which they are

expressed in any type of medium (e.g., words, drawings, photographs or

musical notation).However, there might also be the murky issue of software

patents to contend with. In some cases, patents can be violated even if the

source code is entirely original. This is because patents may cover

functionality, whereas copyrights cover only wording. There are many

complex issues that remain to be resolved with regard to software patents,

and whether patents should even be permitted for software remains highly

contentious.

MINIX is a clone of UNIX that was written in 1987 for use in computer

science classes because of a sudden reversal in policy that prohibited the

formerly freely available UNIX source code from being available to

students. Linux is a UNIX clone that was developed in 1991 because of the

desire for a more powerful operating system than the then widely used MS-

DOS to take full advantage of the capabilities of the new Intel 386 processor.

It was also written because of the very high licensing fees for UNIX and

because of some dissatisfaction with MINIX, including the fact that it lacked

some of the features of UNIX and because of its lower but still significant

licensing fees.

25

Advanced Concepts

NOTES

Self-Instructional Material

Linux, MINIX and other UNIX clones are commonly referred to as Unix-

like operating systems. Actually, this term is usually used in a broader sense

to include all operating systems that have the major characteristics of the

original UNIX as originally written by Ken Thompson at Bell Labs in 1969

and as subsequently developed at both Bell Labs and the University of

California at Berkeley (UCB), regardless of whether they are clones or have

some direct lineage from the original source code.

Clones are generally cheaper than the original software, and in many cases

they are free software (i.e., software that is free both in a monetary sense and

with regard to use). However, they are not necessarily inferior. In fact, in

some cases they are as good as or superior to the originals, as is clearly

illustrated by Linux. They also frequently have the benefit of providing

competition for the original software, thereby stimulating its developers to

improve its performance and features and to lower its price. In contrast to

proprietary software, there is no reason to make clones of free software. This

is because, by definition, the source code for free software is freely available

to anyone to use for any purpose, including modification and redistribution

of such modified versions. Occasionally, there is sufficient dissatisfaction

with the way in which a free software program is being developed to result in

a project fork, which is the starting of a new development branch

independent of the the existing project but based on the same source code.

A second meaning of the word clone in a software context is to make an

exact copy of a file, directory or disk inclusive of any files and subdirectories

within that directory or disk.The term is also used in a hardware context.

Most notably, when IBM introduced its revolutionary IBM PC in 1981, other

companies decided to develop clones as a legal reimplementation from the

PC's documentation and through reverse engineering. Because most of the

components were publicly available with the exception of the BIOS (basic

input output system), the only major task was reverse engineering the BIOS.

The term clone has other meanings in other contexts. It has become widely

used in the field of biotechnology in recent years to refer to an organism (i.e.,

an animal or plant) that is produced asexually (i.e., with only a single parent)

from a single cell of its parent and is genetically identical to that parent.

Unfortunately, in contrast to software cloning, the results of biological

cloning have not been entirely satisfactory to date in that that the cloned

individuals have been inferior to their parents, particularly with regard to life

expectancies.

3.6 PERSONALITIES

In order to allow programs coming from other operating system to be run in

Linux, Linux supports the idea of personalities. Each process is assigned to

an execution domain. This domain specifies the way in which system calls

are carried out, and the way in which messages are processed.

System calls: Linux uses software interrupts to change into kernel mode,

whilst other UNIX system use an inter- segment jump.

26

Self-Instructional Material

Advanced Concepts

NOTES

Message number specified by processes: When a process specifies a

message number, for example in calling the primitive sanction or kill, the

message number is converted by means of look-up-table

Number of messages sent to processes: when a message is to be sent to a

process, the message number is converted by means of look-up-table

The system call personality allows a process to modify its execution domain

in order that Linux can emulate the behaviour of another operating system.

int personality(int pers);

3.7 DEVELOPMENT WITH LINUX

It's Free Linux is free. Really and truly free. One can browse to any of the

distributors of Linux, find the "download" link and download a complete

copy of the entire operating system plus extra software without paying any

thing. One can also buy a boxed version of course. For a nominal price, the

CDs are available, manuals get door-delivered, plus there is telephone or

online support. By comparison, "home" versions of popular commercial OS

would cost thousands of rupees.

With Linux you also don't have to worry about paying again every time you

upgrade the operating system - the upgrades are obviously free too. With

commercial OS, upgrades also have to be paid for every time one is

announced.

It's Open Source

This means two things: First, that the CDs (or the download site) contain an

entire copy of the source code for Linux. Secondly, the user can legally make

modifications to improve it. While this might not mean much to non-

programmers, there are thousands of people with programming capability

who could improve the code or fix problems quickly. When a problem is

found, it is sent off to the coordinating team in charge of the module in

question, who will update the software and issue a patch. What all this boils

down to is that bugs in Linux get fixed much faster than any other operating

system.

It's Modular

Commercial Operating Systems normally get installed as a complete unit.

One cannot, for 7 example, install them without their Graphical User

Interface, or without its printing support - install everything or nothing.

Linux, on the other hand, is a very modular operating system. One could

install or run exactly the bits and pieces of Linux that are needed. In most

cases, the choice is on one of the predefined setups from the installation

menu, but is not compulsory. In some cases this makes a lot of sense. For

example, while setting up a server, one might want to disable the graphical

user interface once it is set up correctly, thus freeing up memory and the

processor for the more important task at hand.

27

Advanced Concepts

NOTES

Self-Instructional Material

It also allows the users to upgrade parts of the operating system without

affecting the rest. For example, one could get the latest version of Gnome or

KDE without changing the kernel.

It’s got More Choices

Also due to its modularity, there is more choice of components to use. One

example is the user interface. Many users choose KDE, which is very easy to

learn for users with Windows experience. Others choose Gnome, which is

more powerful but less similar to Windows. There are also several simple

alternatives for less-powerful computers, which make less demand on the

hardware available.

It’s Portable

Linux runs on practically every piece of equipment which qualifies as a

computer. It can be run on huge multiprocessor servers or a PDA. Apart

from Pentiums of various flavors, there are versions of Linux (called "ports")

on Atari, Amiga, Macintosh, PowerMac, PowerPC, NeXT, Alpha, Motorola,

MIPS, HP, PowerPC, Sun Sparc, Silicon Graphics, VAX/MicroVax, VME,

Psion 5, Sun UltraSparc, etc.

It’s got lots of Extras

Along with the Linux CD, normally quite a lot of software gets thrown in,

which is not usually included with operating systems. Using only the

applications that come with Linux, one could setnup a full web, ftp, database

and email server for example. There is a firewall built into the kernel of the

operating system, one or more office suites, graphics programs, music

players, and lots more. Different distributions of Linux offer different "extra

programs". Slackware, for example, is quite simple (though it still provides

all the commonly needed programs), while SuSE Linux comes with seven

CDs and a DVD-ROM!

It is Stable

All applications can crash, but in many systems, the only recourse is to

switch off and reboot (and with some new "soft-switch" PCs, even that

doesn't work - you have to pull out the power cable). In comparison, Linux is

rock-solid. Every application runs independently of all others - if one

crashes, it crashes alone. Most Linux servers run for months on end, never

shutting down or rebooting. Even the GUI is independent of the kernel of the

operating system.

It’s got Networking

The networking facilities offered by Linux are positively awe-inspiring. One

can use terminal sessions, secure shells, share drives from across the world,

run a wide variety of servers and much more. The user can, for example,

connect XWindows to another Linux PC across a network. If there is more

than one computer, one does not have to physically use the screen, keyboard

and mouse connected to each computer - from any computer connect to any

28

Self-Instructional Material

Advanced Concepts

NOTES

other 8 computer, running applications etc. as if they were on the local

system.

Multiple OS’ s on a PC

Dual options like having Windows as well as Linux are possible and one

could select which one of them to load every time you switch on. Linux can

read Windows' files - it supports the FAT and FAT32 file system’s, and

sometimes NTFS, so it's quite easy to transfer files from one operating

system to the other. The opposite, however, is not possible. Generally,

Windows applications cannot run under Linux, though there is a module

called WINE which runs various small Windows programs in Linux.

However, Open Office – an open source product loaded on to the Linux

system-- can read and write MS-Office files. There are also other office suite

options like Star Office, KOffice, GnomeOffice, WordPerfect Office, etc.

Can Windows and Linux machines interact via network? Definitely. You can

use SAMBA to share files or connect to shared directories or printers. With

SAMBA, the Linux computer could be set up function as a full NT server -

complete with authentication, file/printer sharing and so on. Apart from that,

Linux comes with excellent FTP, Web and similar services which are

accessible to all computers.

Linux Configuration Tool

LinuxConf is a popular utility which allows the configuration of most parts

of Linux and its applications from one place

Check your Progress

1. What is called scheduling Policy?

2. State the Process of Pre-emption.

3. How the Scheduling Algorithm works?

4. What is Signal? Mention the Properties?

5. Write Short note on Personalities? And where it is used in

Linux?

3.8 ANSWERS TO CHECK YOUR PROGRESS

1. The scheduling algorithm of traditional UNIX operating systems

must fulfil several conflicting objectives: fast process response time,

good throughput for background jobs, avoidance of process

starvation, reconciliation of the needs of low- and high-priority

processes, and so on. The set of rules used to determine when and

how selecting a new process to run is called scheduling policy.

2. Linux processes are pre-emptive. If a process enters the

TASK_RUNNING state, the kernel checks whether its dynamic

priority is greater than the priority of the currently running the

execution of current is interrupted and the scheduler is invoked to

29

Advanced Concepts

NOTES

Self-Instructional Material

select another process to run. Be aware that a pre-empted process is

not suspended, since it remains in the TASK_RUNNING state; it

simply no longer uses the CPU. The Linux kernel is not pre-emptive,

which means that a process can be pre-empted only while running in

User Mode

3. The Linux scheduling algorithm works by dividing the CPU time into

epochs. In a single epoch, every process has a specified time quantum

whose duration is computed when the epoch begins. The time

quantum value is the maximum CPU time portion assigned to the

process in that epoch. When a process has exhausted its time

quantum, it is pre-empted and replaced by another

4. A signal is a very short message that may be sent to a process or to a

group of processes.

 To make a process aware that a specific event has occurred

 To force a process to execute a signal handler function

included in its code

5. In order to allow programs coming from other operating system to be

run in Linux, Linux supports the idea of personalities. Each process is

assigned to an execution domain. This domain specifies the way in

which system calls are carried out, and the way in which messages

are processed.

 System calls

 Message number specified by processes

 Number of messages sent to processes

3.9 SUMMARY
 The Linux scheduling algorithm works by dividing the CPU time into

epochs. In a single epoch, every process has a specified time quantum

whose duration is computed when the epoch begins.

 The kernel checks whether there are nonblocked pending signals

before allowing a process to resume its execution in User Mode.

 A clone process is created, using primitive type clone, by duplicating

its parent process. But, unlike classical processes, it may share its

context with its parent.

 Copyright is the power granted by a government to the creator of a

creative work (e.g., the source code for a program, a magazine article,

a poem, a painting or a musical composition) that gives that creator

the exclusive, although transferable, right to copy or perform that

work for a defined period of time.

3.10 KEYWORDS

Process Pre-emption: Linux processes are pre-emptive. If a process enters

the TASK_RUNNING state, the kernel checks whether its dynamic priority

is greater than the priority of the currently running the execution of current

is interrupted and the scheduler is invoked to select another process to run.

30

Self-Instructional Material

Advanced Concepts

NOTES

runnable process. The epoch ends when all runnable processes have

exhausted their quantum.

Signal: A signal is a very short message that may be sent to a process or to a

group of processes.

System calls: Linux uses software interrupts to change into kernel mode,

whilst other UNIX system use an inter- segment jump.

Message number specified by processes: When a process specifies a

message number, for example in calling the primitive sanction or kill, the

message number is converted by means of look-up-table

3.11 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. What is Virtual Memory and Shared Libraries? Mention the uses.

2. What is wine? And why we using it?

3. What are the three ways a process responds to a signal?

4. What is the Reason for the existence of Cloning software?

Long Answer questions:

1. Explain about Sending and Receiving Signal.

2. Explain briefly about Scheduling Algorithm

3. Explain about Cloning.

3.12. FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

31

Self-Instructional Material

MySQL

NOTES

BLOCK – II OPEN SOURCE DATABASE

UNIT- 4 MySQL

Structure

4.0 Introduction

4.1 Introduction

4.2 MySQL

4.3 Setting up Account

4.4 Starting, terminating and writing your Own SQL programs

4.4.1 Connecting to the MySQL Server

4.5 Answers to Check Your Progress

4.6 Summary

4.7 Keywords

4.8 Self Assessment Questions and Exercises

4.9 Further Readings

4.0 INTRODUCTION

This unit explains the basic programming of MySQL by establishing and

connecting with the server with the root password and how to write own sql

programs.

4.1 INTRODUCTION

This unit helps the users to

 Undertand and install mysql

 Write own programs

4.2 MySQL

MySQL is the most popular open source SQL database management system

(DBMS). A fast, reliable, easy-to-use, multi-user multi-threaded relational

database system. It is freely available and released under GPL (GNU General

Public License). MySQL is a data storage area. In this storage area, there are

small sections called Tables.

Advantages

 MySQL is Cross-Platform.

 MySQL is fast.

 MySQL is free.

 Reliable and easy to use.

 Multi-Threaded multi-user and robust SQL Database server.

32

Self-Instructional Material

MySQL

NOTES

Disadvantages

 Missing Sub-selects.

 MySQL doesn't yet support the Oracle SQL extension.

 Does not support Stored Procedures and Triggers.

 MySQL doesn't support views, but this is on the TODO.

Following are the tools to manage MySQL server:

 mysqld - MySQL server daemon. It is used to start the mysql server.

 mysqladmin – Used to perform administrative tasks.

 mysql - A command-line interface for end users to manage user data

objects.

 mysqlcheck - A command-line interface for administrators to check

and repair tables.

 mysqlshow - A command-line interface for end users to see

information on tables and columns.

 mysqldump - A command-line interface for administrators or end

users to export data from the server to files.

 mysqlimport - A command-line interface for administrators or end

users to load data files into tables program tool to load data into

tables.

4.3 SETTING UP ACCOUNT

In order to provide access the MySQL database you need to create an

account to use for connecting to the MySQL server running on a given host.

Use the GRANT statement to set up the MySQL user account. Then use that

account's name and password to make connections to the server.

User names, as used by MySQL for authentication purposes, have nothing to

do with user names (login names) as used by Windows or UnixMySQL user

names can be up to 16 characters long.

MySQL passwords have nothing to do with passwords for logging in to your

operating system.

Account Management Statements

 CREATE USER

 DROUP USER

 RENAME USER

 REVOKE

 SET PASSWORD

33

Self-Instructional Material

MySQL

NOTES

CREATE USER

Syntax:

CREATE USER user [IDENTIFIED BY [PASSWORD] 'password'] [, user

[IDENTIFIED BY [PASSWORD] 'password']] ...

Example:

CREATE USER 'monty'@'localhost' IDENTIFIED BY 'some_pass';

DROP USER

Syntax:

 DROP USER user [, user] ...

Example:

 DROP USER 'jeffrey'@'localhost';

RENAME USER

Syntax

RENAME USER old_user TO new_user [, old_user TO new_user] ...

Example

 RENAME USER 'jeffrey'@'localhost' TO 'jeff'@'127.0.0.1';

SET PASSWORD

Syntax

 SET PASSWORD [FOR user] =

 {

 PASSWORD('some password')

| OLD_PASSWORD('some password') | 'encrypted password'

 }

Example:

 SET PASSWORD FOR 'bob'@'%.loc.gov' =

PASSWORD('newpass');

34

Self-Instructional Material

MySQL

NOTES

4.4 Starting, terminating and writing your Own SQL programs

Invoking MySQL Programs

To invoke a MySQL program from the command line (that is, from your

shell or command prompt), enter the program name followed by any options

or other arguments needed to instruct the program what you want it to do.

The following commands show some sample program invocations. “shell>”

represents the prompt for your command interpreter; it is not part of what

you type. The particular prompt you see depends on your command

interpreter. Typical prompts are $ for sh or bash, % for csh or tcsh, and C:\>

for the Windows command.com or cmd.exe command interpreters.

shell> mysql --user=root test

shell> mysqladmin extended-status variables

shell> mysqlshow --help

shell> mysqldump -u root personnel

Arguments that begin with a single or double dash (“-”, “--”) specify

program options. Options typically indicate the type of connection a program

should make to the server or affect its operational mode Non-option

arguments (arguments with no leading dash) provide additional information

to the program. For example, the mysql program interprets the first non-

option argument as a database name, so the command mysql --user=root test

indicates that you want to use the test database.

Some options are common to a number of programs. The most frequently

used of these are the --host (or -h), --user (or -u), and --password (or -p)

options that specify connection parameters. They indicate the host where the

MySQL server is running, and the username and password of your MySQL

account. All MySQL client programs understand these options; they allow

you to specify which server to connect to and the account to use on that

server. Other connection options are --port (or -P) to specify a TCP/IP port

number and --socket (or -S) to specify a Unix socket file on Unix (or named

pipe name on Windows). For more information on options that specify

connection options

You may find it necessary to invoke MySQL programs using the pathname

to the bin directory in which they are installed. This is likely to be the case if

you get a “program not found” error whenever you attempt to run a MySQL

program from any directory other than the bin directory. To make it more

convenient to use MySQL, you can add the pathname of the bin directory to

your PATH environment variable setting. That enables you to run a program

by typing only its name, not its entire pathname. For example, if mysql is

installed in /usr/local/mysql/bin, you can run the program by invoking it as

mysql, and it is not necessary to invoke it as /usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on

setting your PATH variable. The syntax for setting environment variables is

35

Self-Instructional Material

MySQL

NOTES

interpreter-specific. (Some information is given in Section 4.2.4, “Setting

Environment Variables”.) After modifying your PATH setting, open a new

console window on Windows or log in again on Unix so that the setting goes

into effect

4.4.1 Connecting to the MySQL Server

For a client program to be able to connect to the MySQL server, it must use

the proper connection parameters, such as the name of the host where the

server is running and the username and password of your MySQL account.

Each connection parameter has a default value, but you can override them as

necessary using program options specified either on the command line or in

an option file.The examples here use the mysql client program, but the

principles apply to other clients such as mysqldump, mysqladmin, or

mysqlshow.

This command invokes mysql without specifying any connection parameters

explicitly:

shell> mysql

Because there are no parameter options, the default values apply:The default

hostname is localhost. On Unix, this has a special meaning, as described

later.The default username is ODBC on Windows or your Unix login name

on Unix.No password is sent if neither -p nor --password is given.To specify

the hostname and username explicitly, as well as a password, supply

appropriate options on the command line:

shell> mysql --host=localhost --user=myname --password=mypass

shell> mysql -h localhost -u myname -pmypass

For password options, the password value is optional:If you use a -p or --

password option but do not specify the password value, the client program

prompts you to enter the password. The password is not displayed as you

enter it. This is more secure than giving the password on the command line.

Any user on your system may be able to see a password specified on the

command line by executing a command such as ps auxw. See Section 5.5.6,

“Keeping Your Password Secure”.If you use a -p or --password option and

do specify the password value, there must be no space between -p or --

password= and the password following it.

On Unix, MySQL programs treat the hostname localhost specially, in a way

that is likely different from what you expect compared to other network-

based programs. For connections to localhost, MySQL programs attempt to

connect to the local server by using a Unix socket file. This occurs even if a -

-port or -P option is given to specify a port number. To ensure that the client

makes a TCP/IP connection to the local server, use --host or -h to specify a

hostname value of 127.0.0.1, or the IP address or name of the local server.

You can also specify the connection protocol explicitly, even for localhost,

by using the --protocol=TCP option. For example:

36

Self-Instructional Material

MySQL

NOTES

shell> mysql --host=127.0.0.1

shell> mysql --protocol=TCP

The --protocol option enables you to establish a particular type of connection

even when the other options would normally default to some other

protocol.On Windows, you can force a MySQL client to use a named-pipe

connection by specifying the --pipe or --protocol=PIPE option, or by

specifying . (period) as the host name. If named-pipe connections are not

enabled, an error occurs. Use the --socket option to specify the name of the

pipe if you do not want to use the default pipe name.

Connections to remote servers always use TCP/IP. This command connects

to the server running on remote.example.com using the default port number

(3306):

shell> mysql --host=remote.example.com

To specify a port number explicitly, use the --port or -P option:

shell> mysql --host=remote.example.com --port=13306

You can specify a port number for connections to a local server, too.

However, as indicated previously, connections to localhost on Unix will use

a socket file by default. You will need to force a TCP/IP connection as

already described or any option that specifies a port number will be ignored.

For this command, the program uses a socket file on Unix and the --port

option is ignored:

shell> mysql --port=13306 --host=localhost

To cause the port number to be used, invoke the program in either of these

ways:

shell> mysql --port=13306 --host=127.0.0.1

shell> mysql --port=13306 --protocol=TCP

The following options may be used to control how client programs connect

to the server:

--host=host_name, -h host_name

The host where the server is running. The default value is localhost.

--password[=pass_val], -p[pass_val]

The password of the MySQL account. As described earlier, the password

value is optional, but if given, there must be no space between -p or --

password= and the password following it. The default is to send no

password.

--pipe, -W

37

Self-Instructional Material

MySQL

NOTES

On Windows, connect to the server via a named pipe. This option applies for

connections to a local server only. The server must have been started with

the --enable-named-pipe option to enable named-pipe connections.

--port=port_num, -P port_num

The port number to use for the connection, for connections made via TCP/IP.

The default port number is 3306.

--protocol={TCP|SOCKET|PIPE|MEMORY}

This option explicitly specifies a protocol to use for connecting to the server.

It is useful when the other connection parameters normally would cause a

protocol to be used other than the one you want. For example, connections

on Unix to localhost are made via a Unix socket file by default:

shell> mysql --host=localhost

To force a TCP/IP connection to be used instead, specify a --protocol option:

shell> mysql --host=localhost --protocol=TCP

To start the mysql program, try just typing its name at your command-line

prompt. If mysql starts up correctly, you’ll see a short message, followed by

a mysql> prompt that indicates the program is ready to accept queries. To

illustrate, here’s what the welcome message looks like (to save space, I

won’t show it in any further examples):

Starting and Terminating

% mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 18427 to server version: 3.23.51-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

If mysql tries to start but exits immediately with an “access denied” message,

you’ll need to specify connection parameters. The most commonly needed

parameters are the host to connect to (the host where the MySQL server

runs), your MySQL username, and a password. For example:

% mysql -h localhost -p -u cbuser

Enter password: cbpass

In general, I’ll show mysql commands in examples with no connection

parameter options. I assume that you’ll supply any parameters that you need,

either on the command line, or in an option file (Recipe 1.5) so that you

don’t have to type them each time you invoke mysql. If you don’t have a

MySQL username and password, The syntax and default values for the

38

Self-Instructional Material

MySQL

NOTES

connection parameter options are shown in the following table. These

options have both a single-dash short form and a double-dash long form.

% mysql -pEnter password: ← enter your password here

If you like, you can specify the password directly on the command line by

using either - ppassword (note that there is no space after the -p) or --

password=password. I don’t recommend doing this on a multiple-user

machine, because the password may be visible momentarily to other users

who are running tools such as ps that report process information. If you get

an error message that mysql cannot be found or is an invalid command when

you try to invoke it,.To terminate a mysql session, issue a QUIT statement:

mysql> QUIT

You can also terminate the session by issuing an EXIT statement or (under

Unix) by typing Ctrl-D.The way you specify connection parameters for

mysql also applies to other MySQL programs such as mysqldump and

mysqladmin.

Check your Progress

1. Write short on MySQL.

2. Name the tools used to manage MySQL server.

3. Mention the Account Management Statements.

4. How to invoke a MySQL from command line?

5. What are the Advantages of MySQL?

4.5 ANSWERS TO CHECK YOUR PROGRESS

1. MySQL is the most popular open source SQL database management

system (DBMS). A fast, reliable, easy-to-use, multi-user multi-

threaded relational database system.

2. Some of the tools used are

 Mysqld

 Mysqladmin

 Mysql

 mysqlcheck

 mysqlshow

 mysqldump

 mysqlimport

3. Some of the account management statements are

 CREATE USER

 DROUP USER

 RENAME USER

 REVOKE

 SET PASSWORD

39

Self-Instructional Material

MySQL

NOTES

4. To invoke a MySQL program from the command line (that is, from

your shell or command prompt), enter the program name followed by

any options or other arguments needed to instruct the program what

you want it to do. The following commands show some sample

program invocations. “shell>” represents the prompt for your

command interpreter

5. The advantages of MySQL are

 MySQL is Cross-Platform.

 MySQL is fast.

 MySQL is free.

 Reliable and easy to use.

 Multi-Threaded multi-user and robust SQL Database server.

4.6 SUMMARY
 In order to provide access the MySQL database you need to create an

account to use for connecting to the MySQL server running on a

given host.

 To invoke a MySQL program from the command line (that is, from

your shell or command prompt), enter the program name followed by

any options or other arguments needed to instruct the program what

you want it to do.

 You can also terminate the session by issuing an EXIT statement or

(under Unix) by typing Ctrl-D.

 To start the mysql program, try just typing its name at your

command-line prompt. If mysql starts up correctly, you’ll see a short

message, followed by a mysql> prompt that indicates the program is

ready to accept queries.

4.7 KEYWORDS

MySQL: It is the most popular open source SQL database management

system (DBMS).

User names: It is used by MySQL for authentication purposes, have nothing

to do with user names (login names) as used by Windows or UnixMySQL

user names can be up to 16 characters long.

4.8 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. What are the disadvantages of MySQL?

2. Write a syntax with example to Create User and Drop User.

3. Write a syntax with example to Rename User and Revoke.

4. Write a syntax with example to Set a new Password and change the

Old Password.

40

Self-Instructional Material

MySQL

NOTES

Long Answer questions:

1. Explain the Process involved in Connecting to the MySQL Server.

4.9 FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book. John

Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly Media,

Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata McGraw-

Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata McGraw-

Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

41

Self-Instructional Material

Record Selection Technology

NOTES

UNIT - 5

RECORD SELECTION TECHNOLOGY

Structure

5.0 Introduction

5.1 Objective

5.2 Record selection Technology

5.3 Working with Strings

5.4 Date and Time Functions

5.5 Answers to Check Your Progress

5.6 Summary

5.7 Keywords

5.8 Self Assessment Questions and Exercises

5.9 Further Readings

5.0 INTRODUCTION

This unit covers the Mysql commands for selection of records from the

tables and how strings are manipulated in Mysql and the date and time

functions used in Mysql are decribed with their syntax and examples

5.1 Objective

This unit helps the users to learn and understand the following

 Record selection

 Working with strings

 Date and time functions

5.2 Record Selection Technology

The SELECT statement is used to select data from a database. The statement

begins with the SELECT keyword. The basic SELECT statement has 3

clauses:

SELECT

FROM

WHERE

Select command is used to collect date from the table. We will discuss more

on this by adding more commands to this select command. If you have not

created the tables then please go to sql introduction page to use the sql

commands to create the tables and fill the table with some records (data).

42

Record Selection Technology

NOTES

Self-Instructional Material

Now your table with some data is ready. We will apply select command to

our table (name student) and fetch all the records.

SELECT * FROM `student`

id name mark class

1 John Deo Four 75

2 Max Ruin Three 85

3 Arnold Three 55

4 Krish Star Four 60

5 John Mike Four 60

6 Alex John Four 55

7 My John Rob Fifth 78

8 Asruid Five 5

9 Tes Qry Six 78

10 Big John Four 55

That's all to get all the records from the table student. We have not placed

any restriction here and asked for all the fields with all the records. Now if

we want to restrict our results and get only name field from the table.

SELECT name FROM `student`

This will return only name field from the table. We can ask for more fields

and all field names we have to separate by comma. We can include as many

field names we want from a table.SELECT name, class FROM `student`

name class

John Deo Four

Max Ruin Three

Arnold Three

Krish Star Four

John Mike Four

Alex John Four

My John Rob Fifth

Asruid Five

Tes Qry Six

Big John Four

43

Self-Instructional Material

Record Selection Technology

NOTES

Now we will go for bit more and restrict the number of records we are

getting. We are interested say in only 3 records. Our command should return

3 records only. We will use SQL limit command. This will take two

parameters. One is the starting point and other is number of records required.

Say we are interested in 3 records starting from beginning. Our command

will be

SELECT * FROM `student` LIMIT 0,3

Related Tutorial

Copy data to new table

SQL Left Join

SQL UNION

This command with LIMIT command will return us 3 records starting from 0

(or first) record. This is very important when we use this command with

ORDER BY command. Now let us try to list all the students who have come

in first 3 ranks. We are required to list here 3 records who have mark more

than the others. The top 3 students we want to display in order of first,

second and third. The order we can display are in by default in ascending

order but we require the listing should return in descending order so we will

get the highest ranked student at the top. Before that let us start with a simple

example of ORDER BY command.

SELECT * FROM `student` ORDER BY mark

This will display the records of students in the order of lowest mark to

highest mark.

id name class mark

19 Tinny Nine 18

17 Tumyu Six 54

10 Big John Four 55

22 Reggid Seven 55

29 Tess Played Seven 55

6 Alex John Four 55

3 Arnold Three 55

5 John Mike Four 60

4 Krish Star Four 60

20 Jackly Nine 65

We will change it to display in reverse order so it will display highest mark

at the top and lowest mark at the bottom.

SELECT * FROM `student` ORDER BY `mark` DESC

44

Record Selection Technology

NOTES

Self-Instructional Material

With the addition of command DESC we can change the order of display to

keep the highest mark at the top of the list and lowest mark at the bottom of

the list. Now let us add the LIMIT command to display only the top 3

records. We already have the list in the order of highest mark to lowest mark

so by just limiting the number of records to 3 will give our required top three

student records.

SELECT * FROM `student` ORDER BY `mark` DESC LIMIT 0,3

id name class mark

33 Kenn Rein Six 96

12 Recky Six 94

32 Binn Rott Seven 90

This is the SQL query which will display top three students based on the

mark they scored. In the next section we will use sql WHERE clause to

restrict or filter the records.

5.3 WORKING WITH STRINGS

String functions are used to perform an operation on input string and return

an output string. Following are the string functions defined in SQL:

1. ASCII(): This function is used to find the ASCII value of a character.

Syntax: SELECT ascii('t');

Output: 116

2. CHAR_LENGTH(): This function is used to find the length of a word.

Syntax: SELECT char_length('Hello!');

Output: 6

3. CHARACTER_LENGTH(): This function is used to find the length of a

line.

Syntax: SELECT CHARACTER_LENGTH('geeks for geeks');

Output: 15

4. CONCAT(): This function is used to add two words or strings.

Syntax: SELECT 'Geeks' || ' ' || 'forGeeks' FROM dual;

Output: ‘GeeksforGeeks’

5. CONCAT_WS(): This function is used to add two words or strings with a

symbol as concatenating symbol.

Syntax: SELECT CONCAT_WS('_', 'geeks', 'for', 'geeks');

45

Self-Instructional Material

Record Selection Technology

NOTES

Output: geeks_for_geeks

6. FIND_IN_SET(): This function is used to find a symbol from a set of

symbols.

Syntax: SELECT FIND_IN_SET('b', 'a, b, c, d, e, f');

Output: 2

7. FORMAT(): This function is used to display a number in the given

format.

Syntax: Format("0.981", "Percent");

Output: ‘98.10%’

8. INSERT(): This function is used to insert the data into a database.

Syntax: INSERT INTO database (geek_id, geek_name) VALUES (5000,

'abc');

Output: successfully updated

9. INSTR(): This function is used to find the occurrence of an alphabet.

Syntax: INSTR('geeks for geeks', 'e');

Output: 2 (the first occurrence of ‘e’)

Syntax: INSTR('geeks for geeks', 'e', 1, 2);

Output: 3 (the second occurrence of ‘e’)

10. LCASE(): This function is used to convert the given string into lower

case.

Syntax: LCASE ("GeeksFor Geeks To Learn");

Output: geeksforgeeks to learn

11. LEFT(): This function is used to SELECT a sub string from the left of

given size or characters.

Syntax: SELECT LEFT('geeksforgeeks.org', 5);

Output: geeks

12. LENGTH(): This function is used to find the length of a word.

Syntax: LENGTH('GeeksForGeeks');

Output: 13

13. LOCATE(): This function is used to find the nth position of the given

word in a string.

46

Record Selection Technology

NOTES

Self-Instructional Material

Syntax: SELECT LOCATE('for', 'geeksforgeeks', 1);

Output: 6

14.LOWER(): This function is used to convert the upper case string into

lower case.

Syntax: SELECT LOWER('GEEKSFORGEEKS.ORG');

Output: geeksforgeeks.org

15.LPAD(): This function is used to make the given string of the given size

by adding the given symbol.

Syntax: LPAD('geeks', 8, '0');

Output: 000geeks

16.LTRIM(): This function is used to cut the given sub string from the

original string.

Syntax: LTRIM('123123geeks', '123');

Output: geeks

17. MID(): This function is to find a word from the given position and of the

given size.

Syntax: Mid ("geeksforgeeks", 6, 2);

Output: for

18. POSITION(): This function is used to find position of the first

occurrence of the given alphabet.

Syntax: SELECT POSITION('e' IN 'geeksforgeeks');

Output: 2

19.REPEAT(): This function is used to write the given string again and

again till the number of times mentioned.

Syntax: SELECT REPEAT('geeks', 2);

Output: geeksgeeks

20. REPLACE(): This function is used to cut the given string by removing

the given sub string.

Syntax: REPLACE('123geeks123', '123');

Output: geeks

21.REVERSE(): This function is used to reverse a string.

Syntax: SELECT REVERSE('geeksforgeeks.org');

47

Self-Instructional Material

Record Selection Technology

NOTES

Output: ‘gro.skeegrofskeeg’

22.RIGHT(): This function is used to SELECT a sub string from the right

end of the given size.

Syntax: SELECT RIGHT('geeksforgeeks.org', 4);

Output: ‘.org’

23.RPAD(): This function is used to make the given string as long as the

given size by adding the given symbol on the right.

Syntax: RPAD('geeks', 8, '0');

Output: ‘geeks000’

24.RTRIM(): This function is used to cut the given sub string from the

original string.

Syntax: RTRIM('geeksxyxzyyy', 'xyz');

Output: ‘geeks’

25.SPACE(): This function is used to write the given number of spaces.

Syntax: SELECT SPACE(7);

Output: ‘ ‘

26.STRCMP(): This function is used to compare 2 strings.

If string1 and string2 are the same, the STRCMP function will return 0.

If string1 is smaller than string2, the STRCMP function will return -1.

If string1 is larger than string2, the STRCMP function will return 1.

Syntax: SELECT STRCMP('google.com', 'geeksforgeeks.com');

Output: -1

27. SUBSTR(): This function is used to find a sub string from the a string

from the given position.

Syntax:SUBSTR('geeksforgeeks', 1, 5);

Output: ‘geeks’

28. SUBSTRING(): This function is used to find an alphabet from the

mentioned size and the given string.

Syntax: SELECT SUBSTRING('GeeksForGeeks.org', 9, 1);

Output: ‘G’

48

Record Selection Technology

NOTES

Self-Instructional Material

29. SUBSTRING_INDEX(): This function is used to find a sub string

before the given symbol.

Syntax: SELECT SUBSTRING_INDEX('www.geeksforgeeks.org', '.', 1);

Output: ‘www’

30.TRIM(): This function is used to cut the given symbol from the string.

Syntax: TRIM(LEADING '0' FROM '000123');

Output: 123

31.UCASE(): This function is used to make the string in upper case.

Syntax: UCASE ("GeeksForGeeks");

Output:GEEKSFORGEEKS

5.4 DATE AND TIME FUNCTIONS

In SQL, dates are complicated for newbies, since while working with

database, the format of the date in table must be matched with the input date

in order to insert. In various scenarios instead of date, datetime (time is also

involved with date) is used.

In MySql the default date functions are:

NOW(): Returns the current date and time. Example:

SELECT NOW();

Output:

2017-01-13 08:03:52

CURDATE(): Returns the current date. Example:

SELECT CURDATE();

Output:

2017-01-13

CURTIME(): Returns the current time. Example:

SELECT CURTIME();

Output:

08:05:15

DATE(): Extracts the date part of a date or date/time expression.

Example:For the below table named ‘Test’

49

Self-Instructional Material

Record Selection Technology

NOTES

Id Name BirthTime

4120 Pratik 1996-09-26

16:44:15.581

SELECT Name, DATE(BirthTime) AS BirthDate FROM Test;

Output:

Name BirthDate

Pratik 1996-09-26

EXTRACT(): Returns a single part of a date/time. Syntax:

EXTRACT(unit FORM date);

There are several units that can be considered but only some are used such

as:

MICROSECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH,

QUARTER, YEAR, etc.

And ‘date’ is a valid date expression.

Example:

For the below table named ‘Test’

Id Name BirthTime

4120 Pratik 1996-09-26

16:44:15.581

Queries

SELECT Name, Extract(DAY FROM BirthTime) AS BirthDay FROM Test;

Output:

Name BirthDay

Pratik 26

SELECT Name, Extract(YEAR FROM BirthTime) AS BirthYear FROM

Test;

Output:

Name BirthYear

Pratik 1996

50

Record Selection Technology

NOTES

Self-Instructional Material

SELECT Name, Extract(SECOND FROM BirthTime) AS BirthSecond

FROM Test;

Output:

Name BirthSecond

Pratik 581

DATE_ADD() : Adds a specified time interval to a date

Syntax:

DATE_ADD(date, INTERVAL expr type);

Where, date – valid date expression and expr is the number of interval we

want to add.

MICROSECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH,

QUARTER, YEAR, etc.

Example:

For the below table named ‘Test’

Id Name BirthTime

4120 Pratik 1996-09-26 16:44:15.581

Queries

SELECT Name, DATE_ADD(BirthTime, INTERVAL 1 YEAR) AS

BirthTimeModified FROM Test;

Output:

Name BirthTimeModified

Pratik 1997-09-26 16:44:15.581

SELECT Name, DATE_ADD(BirthTime, INTERVAL 30 DAY) AS

BirthDayModified FROM Test;

Output:

Name BirthDayModified

Pratik 1996-10-26 16:44:15.581

SELECT Name, DATE_ADD(BirthTime, INTERVAL 4 HOUR) AS

BirthHourModified FROM Test;

Output:

51

Self-Instructional Material

Record Selection Technology

NOTES

Name BirthSecond

Pratik 1996-10-26 20:44:15.581

DATE_SUB(): Subtracts a specified time interval from a date. Syntax for

DATE_SUB is same as DATE_ADD just the difference is that DATE_SUB

is used to subtract a given interval of date.

DATEDIFF(): Returns the number of days between two dates.Syntax:

DATEDIFF(date1, date2);

date1 & date2- date/time expression

Example:

SELECT DATE_DIFF('2017-01-13','2017-01-03') AS DateDiff;

Output:

DateDiff

10

DATE_FORMAT(): Displays date/time data in different formats.Syntax:

DATE_FORMAT(date,format);

Date is a valid date and format specifies the output format for the date/time.

The formats that can be used are:

%a-Abbreviated weekday name (Sun-Sat)

%b-Abbreviated month name (Jan-Dec)

%c-Month, numeric (0-12)

%D-Day of month with English suffix (0th, 1st, 2nd, 3rd)

%d-Day of month, numeric (00-31)

%e-Day of month, numeric (0-31)

%f-Microseconds (000000-999999)

%H-Hour (00-23)

%h-Hour (01-12)

%I-Hour (01-12)

%i-Minutes, numeric (00-59)

%j-Day of year (001-366)

52

Record Selection Technology

NOTES

Self-Instructional Material

%k-Hour (0-23)

%l-Hour (1-12)

%M-Month name (January-December)

%m-Month, numeric (00-12)

%p-AM or PM

%r-Time, 12-hour (hh:mm:ss followed by AM or PM)

%S-Seconds (00-59)

%s-Seconds (00-59)

%T-Time, 24-hour (hh:mm:ss)

%U-Week (00-53) where Sunday is the first day of week

%u-Week (00-53) where Monday is the first day of week

%V-Week (01-53) where Sunday is the first day of week, used with %X

%v-Week (01-53) where Monday is the first day of week, used with %x

%W-Weekday name (Sunday-Saturday)

%w-Day of the week (0=Sunday, 6=Saturday)

%X-Year for the week where Sunday is the first day of week, four digits,

used with %V

%x-Year for the week where Monday is the first day of week, four digits,

used with %v

%Y-Year, numeric, four digits

%y-Year, numeric, two digits

Example:

DATE_FORMAT(NOW(),'%d %b %y')

Result:13 Jan 17

Check your Progress

1. Mention the use of SELECT statement and also Mention it

clauses.

2. Name any 6 String Operations in SQL.

3. Explain the syntax with example of MID() and POSITION()

4. Write short on Date and Time Functions.

5. What is the difference between SUBSTR() and SUBSTRING()

53

Self-Instructional Material

Record Selection Technology

NOTES

5.5 ANSWERS TO CHECK YOUR PROGRESS

1. MySQL is the most popular open source SQL database management

system (DBMS). A fast, reliable, easy-to-use, multi-user multi-

threaded relational database system.

2. The string operations in SQL are

i. ASCII()

ii. CHAR_LENGTH()

iii. CHARACTER_LENGTH()

iv. CONCAT()

v. FIND_IN_SET()

vi. REPLACE()

3. Different syntaxes are

i. MID(): This function is to find a word from the given position

and of the given size.

 Syntax: Mid ("geeksforgeeks", 6, 2);

 Output: for

ii. POSITION(): This function is used to find position of the first

occurrence of the given alphabet.

 Syntax: SELECT POSITION('e' IN 'geeksforgeeks');

 Output: 2

4. The Date and Time Functions are given below.

i. NOW(): Returns the current date and time. Example:

SELECT NOW();

Output:

2017-01-13 08:03:52

ii. CURDATE(): Returns the current date. Example:

SELECT CURDATE();

Output:

2017-01-13

iii. CURTIME(): Returns the current time. Example:

SELECT CURTIME();

Output:

08:05:15

5. Two of them are defined below.

i. SUBSTR(): This function is used to find a sub string from the

a string from the given position.

Syntax:SUBSTR('geeksforgeeks', 1, 5);

Output: ‘geeks’

ii. SUBSTRING(): This function is used to find an alphabet

from the mentioned size and the given string.

54

Record Selection Technology

NOTES

Self-Instructional Material

5.6 SUMMARY
 The SELECT statement is used to select data from a database. The

statement begins with the SELECT keyword.

 String functions are used to perform an operation on input string and

return an output string.

 In SQL, dates are complicated for newbies, since while working with

database, the format of the date in table must be matched with the

input date in order to insert.

 With the addition of command DESC we can change the order of

display to keep the highest mark at the top of the list and lowest mark

at the bottom of the list.

5.7 KEYWORDS

SUBSTR(): This function is used to find a sub string from the a string from

the given position.

RTRIM(): This function is used to cut the given sub string from the original

string.

POSITION(): This function is used to find position of the first occurrence of

the given alphabet

5.8 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. Write Appropriate syntax to select first 3 record from table.

2. Write Appropriate syntax to sort the table (student mark) with Rank

3. What is difference between TRIM() and RTRIM()

4. What are the units Considered in Date and Time?

Long Answer questions:

1. Briefly Explain Strings and its Functions with example.

2. Explain About Record Selection Technology.

5.9 FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

55

Self-Instructional Material

Record Selection Technology

NOTES

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition,

Tata McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

56

Working With Sql

NOTES

Self-Instructional Material

UNIT- 6 WORKING WITH SQL

Structure

6.0 Introduction

6.1 Objective

6.2 Sorting query Results

6.3 Generating Summary

6.4 Working with Metadata

6.4.1 Types of Metadata

6.4.2 Obtaining Metadata with SHOW

6.4.3 Obtaining Metadata with INFORMATION_SCHEMA

6.5 Using Sequences

6.5.1Creating a Sequence

6.5.2 Dropping a Sequence

6.6 My SQL and Web

6.6.1 Basic Web Page Generation

6.7 Answers to Check Your Progress

6.8 Summary

6.9 Keywords

6.10 Self Assessment Questions and Exercises

6.11 FURTHER READINGS6.0 INTRODUCTION

This unit helps the user to use and query with MySQL by sorting the queries

using the sorting commands and the commands used with the web

environment for development. It also explains the metadata and how to

generate the summary from the tables.

6.1 OBJECTIVE

This unit explains to users the following concepts

 Learn the sorting queries

 To understand metadata

 Work with sequences

 Working with web environment

6.2 SORTING QUERY RESULTS

This MySQL tutorial explains how to use the MySQL ORDER BY clause

with syntax and examples.

57

Working With Sql

NOTES

Self-Instructional Material

Description

The MySQL ORDER BY clause is used to sort the records in your result set.

Syntax

The syntax for the ORDER BY clause in MySQL is:

SELECT expressions

FROM tables

[WHERE conditions]

ORDER BY expression [ASC | DESC];

Parameters or Arguments

Expressions

The columns or calculations that you wish to retrieve.

Tables

The tables that you wish to retrieve records from. There must be at least one

table listed in the FROM clause.

WHERE conditions

Optional. The conditions that must be met for the records to be selected.

ASC

Optional. It sorts the result set in ascending order by expression (default, if

no modifier is provider).

DESC

Optional. It sorts the result set in descending order by expression.

If the ASC or DESC modifier is not provided in the ORDER BY clause, the

results will be sorted by expression in ascending order. This is equivalent to

ORDER BY expression ASC. The ORDER BY clause can be used in a

SELECT statement, SELECT LIMIT statement, and DELETE LIMIT

statement in MySQL.

Example - Sorting without using ASC/DESC attribute

The MySQL ORDER BY clause can be used without specifying the ASC or

DESC modifier. When this attribute is omitted from the ORDER BY clause,

the sort order is defaulted to ASC or ascending order.

For example:

SELECT city

58

Working With Sql

NOTES

Self-Instructional Material

FROM customers

WHERE customer_name = 'Apple'

ORDER BY city;

This MySQL ORDER BY example would return all records sorted by the

city field in ascending order and would be equivalent to the following

ORDER BY clause:

SELECT city

FROM customers

WHERE customer_name = 'Apple'

ORDER BY city ASC;

Most programmers omit the ASC attribute if sorting in ascending order.

Example - Sorting in descending order

When sorting your result set in descending order, you use the DESC attribute

in your ORDER BY clause as follows:

SELECT last_name, first_name, city

FROM contacts

WHERE last_name = 'Johnson'

ORDER BY city DESC;

This MySQL ORDER BY example would return all records sorted by the

city field in descending order.

Example - Sorting by relative position .You can also use the MySQL

ORDER BY clause to sort by relative position in the result set, where the

first field in the result set is 1. The next field is 2, and so on.

For example:

SELECT last_name, first_name, city

FROM contacts

WHERE last_name = 'Johnson'

ORDER BY 3 DESC;

This MySQL ORDER BY would return all records sorted by the city field in

descending order, since the city field is in position #3 in the result set and

would be equivalent to the following ORDER BY clause:

SELECT last_name, first_name, city

59

Working With Sql

NOTES

Self-Instructional Material

FROM contacts

WHERE last_name = 'Johnson'

ORDER BY city DESC;

Example - Using both ASC and DESC attributes

When sorting your result set using the MySQL ORDER BY clause, you can

use the ASC and DESC attributes in a single SELECT statement.

For example:

SELECT supplier_city, supplier_state

FROM suppliers

WHERE supplier_name = 'Microsoft'

ORDER BY supplier_city DESC, supplier_state ASC;

This MySQL ORDER BY would return all records sorted by the

supplier_city field in descending order, with a secondary sort by

supplier_state in ascending order.

Sorting Subsets of a Table

You don't want to sort an entire table, just part of it. Add a WHERE clause

that selects only the records you want to see.

mysql> SELECT trav_date, miles FROM driver_log WHERE name =

'Henry' ORDER BY trav_date

Sorting and NULL Values

To sort columns that may contain NULL values

mysql> SELECT NULL = NULL;

Sorting by Calendar Day

To sort by day of the calendar year. Sort using the month and day of a date,

ignoring the year. Sorting in calendar order differs from sorting by date.

mysql> SELECT date, description FROM event ORDER BY date;

6.3 GENERATING SUMMARY

Database systems are useful for data storage and retrieval, but can also

summarize your data in more concise forms. Summaries are useful when you

want the overall picture, not the details. They’re more readily understood

than a long list of records. They enable you to answer questions such as

“How many?” or “What is the total?” or “What is the range of values?” If

you run a business, you may want to know how many customers you have in

each state, or how much sales volume you generate each month.

60

Working With Sql

NOTES

Self-Instructional Material

The preceding examples include two common summary types: counting

summaries and content summaries. The first (the number of customer

records per state) is a counting summary. The content of each record is

important only for purposes of placing it into the proper group or category

for counting. Such summaries are essentially histograms, where you sort

items into a set of bins and count the number of items in each bin. The

second example (sales volume per month) is a content summary, in which

sales totals are based on sales values in order records.

Another summary type produces neither counts nor sums, but simply a list of

unique values. This is useful if you care which values are present rather than

how many of each there are. To determine the states in which you have

customers, you need a list of the distinct state names contained in the

records, not a list consisting of the state value from every record.

Using aggregate function we can achieve summary of values. Aggregate

functions are COUNT (), MIN (), MAX (), SUM. (), AVG () and GROUP

BY clause to group the rows into subsets and obtain an aggregate value for

each one.To getting a list of unique values, use SELECT DISTINCT rather

than SELECT.Using COUNT (DISTINCT) - To count how many distinct

values there are

Summarizing with COUNT()

To count the number of rows in an entire table or that match particular

conditions, use the

 COUNT() function.

For example,

 mysql> SELECT COUNT(*) FROM emp_tab;

Summarizing with MIN() and MAX()

Finding smallest or largest values in an entire table, use the MIN () and

MAX () function. For example,

 mysql> SELECT MIN(Sal) AS low, MAX(sal) AS

 high FROM emp_tab;

Summarizing with SUM() and AVG()

SUM() and AVG() produce the total and average (mean) of a set of values:

 For Example,

mysql> SELECT SUM(rno) AS 'No-Of Emp', AVG(sal) AS 'Avg Sal'

FROM

61

Working With Sql

NOTES

Self-Instructional Material

Sorting Query Results

SQL SELECT command to fetch data from MySQL table. When you select

rows, the MySQL server is free to return them in any order, unless you

instruct it otherwise by saying how to sort the result. But a query doesn't

come out in the order you want

6.4 WORKING WITH METADATA

Metadata is data about data.

For example - Consider a file with a picture. The picture or the pixels inside

the file are data. A description of the picture, like "JPEG format, 300x400

pixels, 72dpi", is metadata, because it describes the content of the file,

although it's not the actual data

6.4.1 Types of Metadata

 Information about the result of queries-This includes the number of

records affected by any SELECT, UPDATE or DELETE statement.

 Information about the tables and databases − This includes

information pertaining to the structure of the tables and the databases.

 Information about the MySQL server − This includes the status of the

database server, version number, etc.

6.4.2 Obtaining Metadata with SHOW

MySQL provides a SHOW statement that displays many types of database

metadata. SHOW is helpful for keeping track of the contents of your

databases and reminding yourself about the structure of your tables. The

following examples demonstrate a few uses for SHOW statements.

List the databases you can access:

SHOW DATABASES;

Display the CREATE DATABASE statement for a database:

SHOW CREATE DATABASE db_name;

List the tables in the default database or a given database:

SHOW TABLES;

SHOW TABLES FROM db_name;

SHOW TABLES doesn’t show TEMPORARY tables.

Display the CREATE TABLE statement for a table:

SHOW CREATE TABLE tbl_name;

62

Working With Sql

NOTES

Self-Instructional Material

Display information about columns or indexes in a table:

SHOW COLUMNS FROM tbl_name;

SHOW INDEX FROM tbl_name;

The DESCRIBE tbl_name and EXPLAIN tbl_name statements are

synonymous with SHOW COLUMNS FROM tbl_name.

Display descriptive information about tables in the default database or in a

given database:

SHOW TABLE STATUS;

SHOW TABLE STATUS FROM db_name;

Several forms of the SHOW statement take a LIKE 'pattern' clause

permitting a pattern to be given that limits the scope of the output. MySQL

interprets 'pattern' as an SQL pattern that may include the ‘%’ and ‘_’

wildcard characters.

6.4.3 Obtaining Metadata with INFORMATION_SCHEMA

Another way to obtain information about databases is to access the

INFORMATION_SCHEMA database. INFORMATION_SCHEMA is based

on the SQL standard. That is, the access mechanism is standard, even though

some of the content is MySQL-specific. This makes

INFORMATION_SCHEMA more portable than the various SHOW

statements, which are entirely MySQL-specific.

INFORMATION_SCHEMA is accessed through SELECT statements and

can be used in a flexible manner. SHOW statements always display a fixed

set of columns and you cannot capture the output in a table. With

INFORMATION_SCHEMA, the SELECT statement can name specific

output columns and a WHERE clause can specify any expression required to

select the information that you want. Also, you can use joins or subqueries,

and you can use CREATE TABLE ... SELECT or INSERT INTO ...

SELECT to save the result of the retrieval in another table for further

processing.

You can think of INFORMATION_SCHEMA as a virtual database in which

the tables are views for different kinds of database metadata. To see what

tables INFORMATION_SCHEMA contains, use SHOW TABLES.

6.5 USING SEQUENCES

A sequence is a database object that generates numbers in sequential order.

Applications most often use these numbers when they require a unique value

in a table such as primary key values. The following list describes the

characteristics of sequences.

6.5.1Creating a Sequence

CREATE SEQUENCE sequence_name

63

Working With Sql

NOTES

Self-Instructional Material

 [INCREMENT BY #]

 [START WITH #]

 [MAXVALUE # | NOMAXVALUE]

 [MINVALUE # | NOMINVALUE]

 [CYCLE | NOCYCLE]

6.5.2 Dropping a Sequence

DROP SEQUENCE my_sequence

Use sequences when an application requires a unique identifier. INSERT

statements, and occasionally UPDATE statements, are the most common

places to use sequences. Two "functions" are available on sequence

NEXTVAL: Returns the next value from the sequence.

CURVAL: Returns the value from the last call to NEXTVAL by the current

user during the current connection

Examples

To create the sequence:

CREATE SEQUENCE customer_seq INCREMENT BY 1 START WITH

100

To use the sequence to enter a record into the database:

INSERT INTO customer (cust_num, name, address)

VALUES (customer_seq.NEXTVAL, 'Kalam', '123 Gandhi Nagar.')

6.6 MY SQL AND WEB

MySQL makes it easier to provide dynamic rather than static content. Static

content exists as pages in the web server's document that are served exactly

as is. Visitors can access only the documents that you place in the tree, and

changes occur only when you add, modify, or delete those documents.By

contrast, dynamic content is created on demand

6.6.1 Basic Web Page Generation

Using HTML we can generate your own Web site. HTML is a language for

describing web pages. HTML stands for Hyper Text Markup Language

HTML is not a programming language, it is a markup language A markup

language is a set of markup tags HTML uses markup tags to describe web

pages

HTML

 HTML documents describe web pages

 HTML documents contain HTML tags and plain text

 HTML documents are also called web pages

64

Working With Sql

NOTES

Self-Instructional Material

Static Web Page

A static web page shows the required information to the viewer, but do not

accept any information from the viewer

Dynamic Web Page

A dynamic web page displays the information to the viewer and also accepts

the information from the user Railway reservation, Online shopping etc. are

examples of dynamic web page.

Client side scripting

It is a script, (ex. Javascript, VB script), that is executed by the browser (i.e.

Firefox, Internet Explorer, Safari, Opera, etc.) that resides at the user

computer

Server side scripting

It is a script (ex. ASP .NET, ASP, JSP, PHP, Ruby, or others), is executed by

the server (Web Server), and the page that is sent to the browser is produced

by the serve-side scripting.

Using Apache to Run Web Scripts

Open-Source Web server originally based on NCSA server(National Center

for Supercomputing Applications).

Apache is the most widely used web server software package in the world.

Apache is highly configurable and can be setup to support technologies such

as, password protection, virtual hosting (name based and IP based), and SSL

encryption.

Check your Progress

1. Which clause is used to Sort the Records? What is the Use of

where Condition?

2. Write short note on Client-Side scripting.

3. Where SUMMARY Generating is used?

4. What are the types of Metadata?

5. What is the use of SHOW in SQL?

6.7 ANSWERS TO CHECK YOUR PROGRESS

1. The MySQL ORDER BY clause is used to sort the records in your

result set.

The conditions that must be met for the records to be selected.

2. It is a script, (ex. Javascript, VB script), that is executed by the

browser (i.e. Firefox, Internet Explorer, Safari, Opera, etc.) that

resides at the user computer

65

Working With Sql

NOTES

Self-Instructional Material

3. Summaries are useful when you want the overall picture, not the

details. They’re more readily understood than a long list of records.

They enable you to answer questions such as “How many?” or “What

is the total?” or “What is the range of values?”

4. The types of metadata are

 Information about the result of queries

 Information about the tables and databases

 Information about the MySQL server

5. SHOW statement that displays many types of database metadata.

SHOW is helpful for keeping track of the contents of your databases

and reminding yourself about the structure of your tables.

6.

6.8 SUMMARY
 Database systems are useful for data storage and retrieval, but can

also summarize your data in more concise forms.

 Information about the result of queries-This includes the number of

records affected by any SELECT, UPDATE or DELETE statement.

 A sequence is a database object that generates numbers in sequential

order. Applications most often use these numbers when they require a

unique value in a table such as primary key values.

 MySQL makes it easier to provide dynamic rather than static content.

6.9 KEYWORDS

Sorting Query Results: SQL SELECT command to fetch data from MySQL

table. When you select rows, the MySQL server is free to return them in any

order, unless you instruct it otherwise by saying how to sort the result.

Static Web Page: A static web page shows the required information to the

viewer, but do not accept any information from the viewer

Dynamic Web Page: A dynamic web page displays the information to the

viewer and also accepts the information from the user Railway reservation,

Online shopping etc. are examples of dynamic web page.

6.10 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. How to create a sequence?

2. What is Dropping a Sequence and what are their Functions.

3. Write short on HTML.

4. What is the Difference Between Static and Dynamic web Pages?

5. Write short nodes on Server-side Scripting.

Long Answer questions:

1. Explain the Process of Basic Web Page Generation.

2. Explain briefly about Generating Summary with Example.

66

Working With Sql

NOTES

Self-Instructional Material

6.11 FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition,

Tata McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

67

Php

NOTES

Self-Instructional Material

BLOCK – III

OPEN SOURCE PROGRAMMING

LANGUAGE PHP

UNIT- 7 PHP

Structure

7.0 Introduction

7.1 Objective

7.2 PHP

7.2.1 Common uses of PHP

7.2.2 Characteristics of PHP

7.3 Programming in Web Environment

7.4 PHP Variables

7.4.1 Variable Scope

7.5 Constants

7.5.1 PHP Magic constants

7.6 Data Types

7.6.1 Integers

7.6.2 Doubles

7.6.3Boolean

7.6.4 NULL

7.6.5 Strings

7.6.6 Arrays

7.7 Operators

7.7.1Arithmetic Operators

7.7.2 Comparison Operators

7.7.3 Logical Operators

7.7.4 Assignment Operators

7.7.5 Conditional Operator

7.7.6 Operators Categories

7.7.7 Precedence of PHP Operators

7.8 Statement

7.9 Answers to Check Your Progress

7.10 Summary

7.11 Keywords

7.12 Self Assessment Questions and Exercises

7.13 Further Readings

68

Php

NOTES

Self-Instructional Material

7.0 INTRODUCTION

Open source programming languages plays an pivotal role in creation of real

time applications as the software is freely available and it can be used with

good packages. The worked modules can be shared for later use of

developers. In this unit, the open source programming language PHP is

explained with the basics of programming

7.1 OBJECTIVE

After reading this unit you will be able to

 Understand PHP

 Learn the web environment

 Basics of PHP

7.2 PHP

PHP started out as a small open source project that evolved as more and

more people found out how useful it was. Rasmus Lerdorf unleashed the first

version of PHP way back in 1994. PHP is a recursive acronym for "PHP:

Hypertext Pre-processor". PHP is a server side scripting language that is

embedded in HTML. It is used to manage dynamic content, databases,

session tracking, even build entire e-commerce sites. It is integrated with a

number of popular databases, including MySQL, PostgreSQL, Oracle,

Sybase, Informix, and Microsoft SQL Server.

PHP is pleasingly zippy in its execution, especially when compiled as an

Apache module on the UNIX side. The MySQL server, once started,

executes even very complex queries with huge result sets in record-setting

time. PHP supports a large number of major protocols such as POP3, IMAP,

and LDAP. PHP4 added support for Java and distributed object architectures

(COM and CORBA), making n-tier development a possibility for the first

time.

7.2.1 Common uses of PHP

PHP performs system functions, i.e. from files on a system it can create,

open, read, write, and close them. PHP can handle forms, i.e. gather data

from files, save data to a file, through email you can send data, return data to

the user. You add, delete, modify elements within your database through

PHP. Using PHP, you can restrict users to access some pages of your

website. It can encrypt data.

7.2.2 Characteristics of PHP

Five important characteristics make PHP's practical nature possible

 Simplicity

 Efficiency

 Security

69

Php

NOTES

Self-Instructional Material

 Flexibility

 Familiarity

7.3 PROGRAMMING IN WEB ENVIRONMENT

PHP programs are written using a text editor, such as Notepad, Simple Text,

or vi, just like HTML pages. However, unlike HTML, PHP files end with a

.php extension. This extension signifies to the server that it needs to parse the

PHP code before sending the resulting HTML code to the viewer’s web

browser. In PHP, on the fly method is adopted to publish the document.

Hence, the PHP developer can generate not only web pages, but also other

web embedding documents like PDF, PNG, GIF, etc. The PHP web

environment is usually set, with AMP (Apache, MySQL, and

PHP/Perl/Python), which are linked together.

PHP not only allows HTML pages to be created on the fly, but it is invisible

to your web site visitors. The only thing they see when they view the source

of your code is the resulting HTML output. In this respect, PHP gives you a

bit more security by hiding your programming logic. HTML can also be

written inside the PHP code of your page, which allows you to format text

while keeping blocks of code together. This will also help you write

organized, efficient code, and the browser (and, more importantly, the person

viewing the site) won’t know the difference.

PHP can also be written as a standalone program with no HTML at all. This

is helpful for storing your connection variables, redirecting your visitors to

another page of your site, or performing other functions

7.4 PHP VARIABLES

The main way to store information in the middle of a PHP program is by

using a variable. Here are the most important things to know about variables

in PHP.All variables in PHP are denoted with a leading dollar sign ($).The

value of a variable is the value of its most recent assignment. Variables are

assigned with the = operator, with the variable on the left-hand side and the

expression to be evaluated on the right. Variables can, but do not need, to be

declared before assignment. Variables in PHP do not have intrinsic types - a

variable does not know in advance whether it will be used to store a number

or a string of characters.

Variables used before they are assigned have default values. PHP does a

good job of automatically converting types from one to another when

necessary. PHP variables are Perl-like.

7.4.1 Variable Scope

Scope can be defined as the range of availability a variable has to the

program in which it is declared. PHP variables can be one of four scope

types −

 Local variables

70

Php

NOTES

Self-Instructional Material

 Function parameters

 Global variables

 Static variables

 Variable Naming

Rules for naming a variable is –

 Variable names must begin with a letter or underscore character.

 A variable name can consist of numbers, letters, underscores but you

cannot use characters like + , - , % , (,) . & , etc

 There is no size limit for variables.

7.5 CONSTANTS

A constant is a name or an identifier for a simple value. A constant value

cannot change during the execution of the script. By default, a constant is

case-sensitive. By convention, constant identifiers are always uppercase. A

constant name starts with a letter or underscore, followed by any number of

letters, numbers, or underscores. If you have defined a constant, it can never

be changed or undefined.

To define a constant you have to use define() function and to retrieve the

value of a constant, you have to simply specifying its name. Unlike with

variables, you do not need to have a constant with a $. You can also use the

function constant() to read a constant's value if you wish to obtain the

constant's name dynamically.

constant() function

As indicated by the name, this function will return the value of the constant.

This is useful when you want to retrieve value of a constant, but you do not

know its name, i.e. It is stored in a variable or returned by a function.

constant() example

<?php

 define("MINSIZE", 50);

 echo MINSIZE;

 echo constant("MINSIZE"); // same thing as the previous line

?>

Only scalar data (boolean, integer, float and string) can be contained in

constants.

Differences between constants and variables are There is no need to write a

dollar sign ($) before a constant, where as in Variable one has to write a

dollar sign. Constants cannot be defined by simple assignment, they may

71

Php

NOTES

Self-Instructional Material

only be defined using the define () function. Constants may be defined and

accessed anywhere without regard to variable scoping rules.

Once the Constants have been set, may not be redefined or undefined. Valid

and invalid constant names

// Valid constant names

define("ONE", "first thing");

define("TWO2", "second thing");

define("THREE_3", "third thing");

// Invalid constant names

define("2TWO", "second thing");

define("__THREE__", "third value");

7.5.1 PHP Magic constants

PHP provides a large number of predefined constants to any script which it

runs. There are five magical constants that change depending on where they

are used. For example, the value of LINE depends on the line that it's used

on in your script. These special constants are case-insensitive and are as

follows.

A few "magical" PHP constants are given below

LINE- The current line number of the file.

FILE- The full path and filename of the file. If used inside an include, the

name of the included file is returned. Since PHP 4.0.2, __FILE__ always

contains an absolute path whereas in older versions it contained relative path

under some circumstances.

FUNCTION- The function name. (Added in PHP 4.3.0) As of PHP 5 this

constant returns the function name as it was declared (case-sensitive). In

PHP 4 its value is always lowercased.

CLASS-The class name. (Added in PHP 4.3.0) As of PHP 5 this constant

returns the class name as it was declared (case-sensitive). In PHP 4 its value

is always lowercased.

METHOD- The class method name. (Added in PHP 5.0.0) The method

name is returned as it was declared (case-sensitive).

7.6 DATA TYPES

PHP has a total of eight data types which we use to construct our variables

Integers − are whole numbers, without a decimal point, like 4195.

Doubles − are floating-point numbers, like 3.14159 or 49.1.

72

Php

NOTES

Self-Instructional Material

Booleans − have only two possible values either true or false.

NULL − is a special type that only has one value: NULL.

Strings − are sequences of characters, like 'PHP supports string operations.'

Arrays − are named and indexed collections of other values.

Objects − are instances of programmer-defined classes, which can package

up both other kinds of values and functions that are specific to the class.

Resources − are special variables that hold references to resources external

to PHP (such as database connections).

The first five are simple types, and the next two (arrays and objects) are

compound - the compound types can package up other arbitrary values of

arbitrary type, whereas the simple types cannot. We will explain only simple

data type in this chapters. Array and Objects will be explained separately.

7.6.1 Integers

They are whole numbers, without a decimal point, like 4195. They are the

simplest type .they correspond to simple whole numbers, both positive and

negative. Integers can be assigned to variables, or they can be used in

expressions, like so −

$int_var = 12345;

$another_int = -12345 + 12345;

Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base

16) format. Decimal format is the default, octal integers are specified with a

leading 0, and hexadecimals have a leading 0x.For most common platforms,

the largest integer is (2**31 . 1) (or 2,147,483,647), and the smallest (most

negative) integer is . (2**31 . 1) (or .2,147,483,647).

7.6.2 Doubles

They like 3.14159 or 49.1. By default, doubles print with the minimum

number of decimal places needed. For example, the code −

 Live Demo

<?php

 $many = 2.2888800;

 $many_2 = 2.2111200;

 $few = $many + $many_2;

 print("$many + $many_2 = $few
");

?>

73

Php

NOTES

Self-Instructional Material

It produces the following browser output −

2.28888 + 2.21112 = 4.5

7.6.3 Boolean

They have only two possible values either true or false. PHP provides a

couple of constants especially for use as Booleans: TRUE and FALSE,

which can be used like so −

if (TRUE)

 print("This will always print
");

else

 print("This will never print
");

Interpreting other types as Booleans. Here are the rules for determine the

"truth" of any value not already of the Boolean type −If the value is a

number, it is false if exactly equal to zero and true otherwise. If the value is a

string, it is false if the string is empty (has zero characters) or is the string

"0", and is true otherwise. Values of type NULL are always false.

If the value is an array, it is false if it contains no other values, and it is true

otherwise. For an object, containing a value means having a member variable

that has been assigned a value. Valid resources are true (although some

functions that return resources when they are successful will return FALSE

when unsuccessful).Don't use double as Booleans.

Each of the following variables has the truth value embedded in its name

when it is used in a Boolean context.

$true_num = 3 + 0.14159;

$true_str = "Tried and true"

$true_array[49] = "An array element";

$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = "";

7.6.4 NULL

NULL is a special type that only has one value: NULL. To give a variable

the NULL value, simply assign it like this −

$my_var = NULL;

74

Php

NOTES

Self-Instructional Material

The special constant NULL is capitalized by convention, but actually it is

case insensitive; you could just as well have typed −

$my_var = null;

A variable that has been assigned NULL has the following properties −It

evaluates to FALSE in a Boolean context. It returns FALSE when tested

with IsSet() function.

7.6.5 Strings

They are sequences of characters, like "PHP supports string operations".

Following are valid examples of string

$string_1 = "This is a string in double quotes";

$string_2 = 'This is a somewhat longer, singly quoted string';

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

Singly quoted strings are treated almost literally, whereas doubly quoted

strings replace variables with their values as well as specially interpreting

certain character sequences.

 Live Demo

<?php

 $variable = "name";

 $literally = 'My $variable will not print!';

 print($literally);

 print "
";

 $literally = "My $variable will print!";

 print($literally);

?>

This will produce following result −

My $variable will not print!

My name will print

7.6.6 Arrays

An array is a data structure that stores one or more similar type of values in

a single value. For example if you want to store 100 numbers then instead

of defining 100 variables its easy to define an array of 100 length.

75

Php

NOTES

Self-Instructional Material

There are three different kind of arrays and each array value is accessed

using an ID c which is called array index.

 Numeric array − An array with a numeric index. Values are stored

and accessed in linear fashion.

 Associative array − An array with strings as index. This stores

element values in association with key values rather than in a strict

linear index order.

 Multidimensional array − An array containing one or more arrays

and values are accessed using multiple indices

7.7 OPERATORS

PHP language supports following type of operators.

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

7.7.1Arithmetic Operators

There are following arithmetic operators supported by PHP language

.Assume variable A holds 10 and variable B holds 20 then

Show Examples

Operator Description Example

+ Adds two operands A + B will give

30

- Subtracts second

operand from the first

A - B will give -

10

* Multiply both operands A * B will give

200

/ Divide numerator by

de-numerator

B / A will give

2

% Modulus Operator and

remainder of after an

integer division

B % A will give

0

++ Increment operator,

increases integer value

by one

A++ will give 11

-- Decrement operator,

decreases integer value

by one

A-- will give 9

76

Php

NOTES

Self-Instructional Material

7.7.2 Comparison Operators

There are following comparison operators supported by PHP

languageAssume variable A holds 10 and variable B holds 20 then

Show Examples

Operator Description Example

==

Checks if the value of

two operands are equal

or not, if yes then

condition becomes true.

(A == B) is not true.

!=

Checks if the value of

two operands are equal

or not, if values are not

equal then condition

becomes true.

(A != B) is true.

>

Checks if the value of

left operand is greater

than the value of right

operand, if yes then

condition becomes true.

(A > B) is not true.

<

Checks if the value of

left operand is less than

the value of right

operand, if yes then

condition becomes true.

(A < B) is true.

>=

Checks if the value of

left operand is greater

than or equal to the

value of right operand,

if yes then condition

becomes true.

(A >= B) is not true.

<=

Checks if the value of

left operand is less than

or equal to the value of

right operand, if yes

then condition becomes

true.

(A <= B) is true.

7.7.3 Logical Operators

There are following logical operators supported by PHP language Assume

variable A holds 10 and variable B holds 20 then −Show Examples

77

Php

NOTES

Self-Instructional Material

Operator Description Example

and

Called Logical AND

operator. If both the

operands are true then

condition becomes true.

(A and B) is true.

or

Called Logical OR

Operator. If any of the

two operands are non

zero then condition

becomes true.

(A or B) is true.

&&

Called Logical AND

operator. If both the

operands are non zero

then condition becomes

true.

(A && B) is true.

||

Called Logical OR

Operator. If any of the

two operands are non

zero then condition

becomes true.

(A || B) is true.

!

Called Logical NOT

Operator. Use to

reverses the logical state

of its operand. If a

condition is true then

Logical NOT operator

will make false.

!(A && B) is false.

7.7.4 Assignment Operators

There are following assignment operators supported by PHP language

−Show Examples

Operator Description Example

=

Simple assignment

operator, Assigns values

from right side operands

to left side operand

C = A + B will assign

value of A + B into C

+=

Add AND assignment

operator, It adds right

operand to the left

operand and assign the

C += A is equivalent to

C = C + A

78

Php

NOTES

Self-Instructional Material

result to left operand

-=

Subtract AND

assignment operator, It

subtracts right operand

from the left operand

and assign the result to

left operand

C -= A is equivalent to

C = C - A

*=

Multiply AND

assignment operator, It

multiplies right operand

with the left operand

and assign the result to

left operand

C *= A is equivalent to

C = C * A

/=

Divide AND assignment

operator, It divides left

operand with the right

operand and assign the

result to left operand

C /= A is equivalent to

C = C / A

%=

Modulus AND

assignment operator, It

takes modulus using

two operands and assign

the result to left operand

C %= A is equivalent to

C = C % A

7.7.5 Conditional Operator

There is one more operator called conditional operator. This first evaluates

an expression for a true or false value and then execute one of the two given

statements depending upon the result of the evaluation. The conditional

operator has this syntax −

Show Examples

Operator Description Example

? : Conditional Expression

If Condition is true ?

Then value X :

Otherwise value Y

7.7.6 Operators Categories

All the operators we have discussed above can be categorised into following

categories

79

Php

NOTES

Self-Instructional Material

 Unary prefix operators, which precede a single operand.

 Binary operators, which take two operands and perform a variety of

arithmetic and logical operations.

 The conditional operator (a ternary operator), which takes three

operands and evaluates either the second or third expression,

depending on the evaluation of the first expression.

 Assignment operators, which assign a value to a variable.

7.7.7 Precedence of PHP Operators

Operator precedence determines the grouping of terms in an expression. This

affects how an expression is evaluated. Certain operators have higher

precedence than others; for example, the multiplication operator has higher

precedence than the addition operator

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator *

has higher precedence than + so it first get multiplied with 3*2 and then adds

into 7. Here operators with the highest precedence appear at the top of the

table, those with the lowest appear at the bottom. Within an expression,

higher precedence operators will be evaluated first.

Category Operator Associativity

Unary ! ++ -- Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= Right to left

7.8 STATEMENT

A prepared statement is a feature used to execute the same (or similar) SQL

statements repeatedly with high efficiency.Prepared statements basically

work like this:

80

Php

NOTES

Self-Instructional Material

Prepare: An SQL statement template is created and sent to the database.

Certain values are left unspecified, called parameters (labeled "?"). Example:

INSERT INTO MyGuests VALUES(?, ?, ?)The database parses, compiles,

and performs query optimization on the SQL statement template, and stores

the result without executing it

Execute: At a later time, the application binds the values to the parameters,

and the database executes the statement. The application may execute the

statement as many times as it wants with different values.Compared to

executing SQL statements directly, prepared statements have three main

advantages:

 Prepared statements reduce parsing time as the preparation on the

query is done only once (although the statement is executed multiple

times).

 Bound parameters minimize bandwidth to the server as you need

send only the parameters each time, and not the whole

query.Prepared statements are very useful against SQL injections,

because parameter values, which are transmitted later using a

different protocol, need not be correctly escaped.

 If the original statement template is not derived from external input,

SQL injection cannot occur.

Check your Progress

1. Write short on PHP?

2. What are the Characteristics of PHP?

3. What is Variable Scope? Mention in types.

4. What are Constants?

7.9. ANSWERS TO CHECK YOUR PROGRESS

1. PHP started out as a small open source project that evolved as more

and more people found out how useful it was. PHP is a server-side

scripting language that is embedded in HTML. It is used to manage

dynamic content, databases, session tracking, even build entire e-

commerce sites.

2. The characteristics of PHP are

 Simplicity

 Efficiency

 Security

 Flexibility

 Familiarity

81

Php

NOTES

Self-Instructional Material

3. Scope can be defined as the range of availability a variable has to the

program in which it is declared. PHP variables can be one of four

scope types:

 Local variables

 Function parameters

 Global variables

 Static variables

 Variable Naming

4. A constant is a name or an identifier for a simple value. A constant

value cannot change during the execution of the script. By default, a

constant is case-sensitive.

7.10 SUMMARY

 An array is a data structure that stores one or more similar type of

values in a single value. For example if you want to store 100

numbers then instead of defining 100 variables its easy to define an

array of 100 length.

 Resources are special variables that hold references to resources

external to PHP (such as database connections).

 To define a constant you have to use define() function and to

retrieve the value of a constant, you have to simply specifying its

name.

7.11 KEYWORDS

Numeric array − An array with a numeric index. Values are stored and

accessed in linear fashion

Boolean: They have only two possible values either true or false. PHP

provides a couple of constants especially for use as Booleans: TRUE and

FALSE,

Resources: They are special variables that hold references to resources

external to PHP (such as database connections).

Constants: A constant is a name or an identifier for a simple value. A

constant value cannot change during the execution of the script.

82

Php

NOTES

Self-Instructional Material

7.12 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. List some of the PHP variables?

2. Write short on constants.

3. What are the different data types?

4. Write short on PHP Magical constants.

Long Answer questions:

1. Explain the type of operators supported in PHP.

2. Explain briefly about the eight data types.

7.13. FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition,

Tata McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

83

Functions

NOTES

Self-Instructional Material

UNIT- 8 FUNCTIONS

Structure

8.0 Introduction

8.1 Objective

8.2Functions

8.2.1 Creating PHP Function

8.2.2 PHP Functions with Parameters

8.2.3 Passing Arguments by Reference

8.2.4 PHP Functions Returning Value

8.2.5 Setting Default Values for Function Parameter

8.2.6 Dynamic Function Calls

8.3 Arrays

8.3.1 Numeric Array

8.3.2 Associative Arrays

8.3.3 Multidimensional Arrays

8.4 Object Oriented Concepts

8.4.1 Defining PHP Classes

8.4.2 Creating Objects in PHP

8.4.3 Calling Member Functions

8.4.4Constructor Functions

8.4.5 Function Overriding

8.4.6 Interfaces

8.5. String Manipulation and Regular Expression

8.5.1 String Concatenation Operator

8.6 File Handling and Data Storage

8.6.1The include() Function

8.6.2 The require() Function

8.7 Answers to Check Your Progress

8.8 Summary

8.9 Keywords

8.10 Self Assessment Questions and Exercises

8.11 Further Readings

8.0 INTRODUCTION

The programming of PHP with functions helps for the manipulation of data in

a much easier manner. The file handling functions and the storage of data is

helpful for the usage of large databases. IN this unit, the functions of PHP

and its usage with files and strings are explained.

84

Functions

NOTES

Self-Instructional Material

8.1 OBJECTIVE

This unit helps the user to understand the following concepts

 Function

 Strings

 Arrays

 OOP

 Regular Expression

 File Handling

8.2 FUNCTIONS

PHP functions are similar to other programming languages. A function is a

piece of code which takes one more input in the form of parameter and does

some processing and returns a value. You already have seen many functions

like fopen() and fread() etc. They are built-in functions but PHP gives you

option to create your own functions as well. There are two parts which should

be clear to you

 Creating a PHP Function

 Calling a PHP Function

In fact you hardly need to create your own PHP function because there are

already more than 1000 of built-in library functions created for different area

and you just need to call them according to your requirement. Please refer to

PHP Function Reference for a complete set of useful functions.

8.2.1 Creating PHP Function

It’s very easy to create your own PHP function. Suppose you want to create a

PHP function which will simply write a simple message on your browser

when you will call it. Following example creates a function called

writeMessage() and then calls it just after creating it. Note that while creating

a function its name should start with keyword function and all the PHP code

should be put inside { and } braces as shown in the following example below

−

 Live Demo

<html>

 <head>

 <title>Writing PHP Function</title>

 </head>

 <body>

 <?php

85

Functions

NOTES

Self-Instructional Material

 /* Defining a PHP Function */

 function writeMessage() {

 echo "You are really a nice person, Have a nice time!";

 }

 /* Calling a PHP Function */

 writeMessage();

 ?>

 </body>

</html>

This will display following result −

You are really a nice person, Have a nice time!

8.2.2 PHP Functions with Parameters

PHP gives you option to pass your parameters inside a function. You can pass

as many as parameters your like. These parameters work like variables inside

your function. Following example takes two integer parameters and add them

together and then print them.

 Live Demo

<html>

 <head>

 <title>Writing PHP Function with Parameters</title>

 </head>

 <body>

 <?php

 function addFunction($num1, $num2) {

 $sum = $num1 + $num2;

 echo "Sum of the two numbers is : $sum";

 }

 addFunction(10, 20);

 ?>

 </body>

</html>

86

Functions

NOTES

Self-Instructional Material

This will display following result −

Sum of the two numbers is : 30

8.2.3 Passing Arguments by Reference

It is possible to pass arguments to functions by reference. This means that a

reference to the variable is manipulated by the function rather than a copy of

the variable's value. Any changes made to an argument in these cases will

change the value of the original variable. You can pass an argument by

reference by adding an ampersand to the variable name in either the function

call or the function definition.

Following example depicts both the cases.

 Live Demo

<html>

 <head>

 <title>Passing Argument by Reference</title>

 </head>

 <body>

 <?php

 function addFive($num) {

 $num += 5;

 }

 function addSix(&$num) {

 $num += 6;

 }

 $orignum = 10;

 addFive($orignum);

 echo "Original Value is $orignum
";

 addSix($orignum);

 echo "Original Value is $orignum
";

 ?>

 </body>

</html>

87

Functions

NOTES

Self-Instructional Material

This will display following result −

Original Value is 10

Original Value is 16

8.2.4 PHP Functions Returning Value

A function can return a value using the return statement in conjunction with a

value or object. return stops the execution of the function and sends the value

back to the calling code.You can return more than one value from a function

using return array(1,2,3,4).Following example takes two integer parameters

and add them together and then returns their sum to the calling program. Note

that return keyword is used to return a value from a function.

 Live Demo

<html>

 <head>

 <title>Writing PHP Function which returns value</title>

 </head>

 <body>

 <?php

 function addFunction($num1, $num2) {

 $sum = $num1 + $num2;

 return $sum;

 }

 $return_value = addFunction(10, 20);

 echo "Returned value from the function : $return_value";

 ?>

 </body>

</html>

This will display following result –Ret

urned value from the function : 30

8.2.5 Setting Default Values for Function Parameters

You can set a parameter to have a default value if the function's caller doesn't

pass it. Following function prints NULL in case use does not pass any value

to this function.

88

Functions

NOTES

Self-Instructional Material

 Live Demo

<html>

 <head>

 <title>Writing PHP Function which returns value</title>

 </head>

 <body>

 <?php

 function printMe($param = NULL) {

 print $param;

 }

 printMe("This is test");

 printMe();

 ?>

 </body>

</html>

This will produce following result

This is test

8.2.6 Dynamic Function Calls

It is possible to assign function names as strings to variables and then treat

these variables exactly as you would the function name itself. Following

example depicts this behaviour.

 Live Demo

<html>

 <head>

 <title>Dynamic Function Calls</title>

 </head>

 <body>

 <?php

 function sayHello() {

 echo "Hello
";

 }

 $function_holder = "sayHello";

 $function_holder();

 ?>

89

Functions

NOTES

Self-Instructional Material

 </body>

</html>

This will display following result

Hello

8.3 ARRAYS

An array is a data structure that stores one or more similar type of values in a

single value. For example if you want to store 100 numbers then instead of

defining 100 variables its easy to define an array of 100 length. is called

array index.

 Numeric array − An array with a numeric index. Values are stored

and accessed in linear fashion.

 Associative array − An array with strings as index. This stores

element values in association with key values rather than in a strict

linear index order.

 Multidimensional array − An array containing one or more arrays and

values are accessed using multiple indices

8.3.1 Numeric Array

These arrays can store numbers, strings and any object but their index will be

represented by numbers. By default array index starts from zero.

Example

Following is the example showing how to create and access numeric

arrays.Here we have used array() function to create array. This function is

explained in function reference.

 Live Demo

<html>

 <body>

 <?php

 /* First method to create array. */

 $numbers = array(1, 2, 3, 4, 5);

 foreach($numbers as $value) {

 echo "Value is $value
";

 }

 /* Second method to create array. */

 $numbers[0] = "one";

 $numbers[1] = "two";

90

Functions

NOTES

Self-Instructional Material

 $numbers[2] = "three";

 $numbers[3] = "four";

 $numbers[4] = "five";

 foreach($numbers as $value) {

 echo "Value is $value
";

 }

 ?>

 </body>

</html>

This will produce the following result −

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

Value is one

Value is two

Value is three

Value is four

Value is five

8.3.2 Associative Arrays

The associative arrays are very similar to numeric arrays in term of

functionality but they are different in terms of their index. Associative array

will have their index as string so that you can establish a strong association

between key and values. To store the salaries of employees in an array, a

numerically indexed array would not be the best choice. Instead, we could

use the employees names as the keys in our associative array, and the value

would be their respective salary.

Example

 Live Demo

<html>

 <body>

 <?php

 /* First method to associate create array. */

 $salaries = array("mohammad"=>2000,"qadir"=>1000,"zara"=>500);

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

91

Functions

NOTES

Self-Instructional Material

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 /* Second method to create array. */

 $salaries['mohammad'] = "high";

 $salaries['qadir'] = "medium";

 $salaries['zara'] = "low";

 echo "Salary of mohammad is ". $salaries['mohammad'] . "
";

 echo "Salary of qadir is ". $salaries['qadir']. "
";

 echo "Salary of zara is ". $salaries['zara']. "
";

 ?>

 </body>

</html>

This will produce the following result −

Salary of mohammad is 2000

Salary of qadir is 1000

Salary of zara is 500

Salary of mohammad is high

Salary of qadir is medium

Salary of zara is low

8.3.3 Multidimensional Arrays

A multi-dimensional array each element in the main array can also be an

array. And each element in the sub-array can be an array, and so on. Values

in the multi-dimensional array are accessed using multiple indexes.

Example

In this example we create a two dimensional array to store marks of three

students in three subjects −

Live Demo

<html>

 <body>

 <?php

 $marks = array(

 "mohammad" => array (

 "physics" => 35,

92

Functions

NOTES

Self-Instructional Material

 "maths" => 30,

 "chemistry" => 39

),

 "qadir" => array (

 "physics" => 30,

 "maths" => 32,

 "chemistry" => 29

),

 "zara" => array (

 "physics" => 31,

 "maths" => 22,

 "chemistry" => 39

)

);

 /* Accessing multi-dimensional array values */

 echo "Marks for mohammad in physics : " ;

 echo $marks['mohammad']['physics'] . "
";

 echo "Marks for qadir in maths : ";

 echo $marks['qadir']['maths'] . "
";

 echo "Marks for zara in chemistry : " ;

 echo $marks['zara']['chemistry'] . "
";

 ?>

 </body>

</html>

This will produce the following result −

Marks for mohammad in physics: 35

Marks for qadir in maths: 32

Marks for zara in chemistry: 39

93

Functions

NOTES

Self-Instructional Material

8.4 OBJECT ORIENTED CONCEPTS

Before we go in detail, let’s define important terms related to Object Oriented

Programming.

Class − this is a programmer-defined data type, which includes local

functions as well as local data. You can think of a class as a template for

making many instances of the same kind (or class) of object.

Object − an individual instance of the data structure defined by a class. You

define a class once and then make many objects that belong to it. Objects are

also known as instance.

Member Variable − these are the variables defined inside a class. This data

will be invisible to the outside of the class and can be accessed via member

functions. These variables are called attribute of the object once an object is

created.

Member function − these are the function defined inside a class and are used

to access object data.

Inheritance − When a class is defined by inheriting existing function of a

parent class then it is called inheritance. Here child class will inherit all or

few member functions and variables of a parent class.

Parent class − A class that is inherited from by another class. This is also

called a base class or super class.

Child Class − A class that inherits from another class. This is also called a

subclass or derived class.

Polymorphism − this is an object oriented concept where same function can

be used for different purposes. For example function name will remain same

but it takes different number of arguments and can do different task.

Overloading − a type of polymorphism in which some or all of operators

have different implementations depending on the types of their arguments.

Similarly functions can also be overloaded with different implementation.

Data Abstraction − any representation of data in which the implementation

details are hidden (abstracted).

Encapsulation − refers to a concept where we encapsulate all the data and

member functions together to form an object.

Constructor − refers to a special type of function which will be called

automatically whenever there is an object formation from a class.

Destructor − refers to a special type of function which will be called

automatically whenever an object is deleted or goes out of scope.

8.4.1 Defining PHP Classes

The general form for defining a new class in PHP is as follows −

94

Functions

NOTES

Self-Instructional Material

<?php

 class phpClass {

 var $var1;

 var $var2 = "constant string";

 function myfunc ($arg1, $arg2) {

 [..]

 }

 [..]

 }

?>

Here is the description of each line −The special form class, followed by the

name of the class that you want to define. A set of braces enclosing any

number of variable declarations and function definitions. Variable

declarations start with the special form var, which is followed by a

conventional $ variable name; they may also have an initial assignment to a

constant value. Function definitions look much like standalone PHP functions

but are local to the class and will be used to set and access object data.

Example

Here is an example which defines a class of Books type

<?php

 class Books {

 /* Member variables */

 var $price;

 var $title;

 /* Member functions */

 function setPrice($par){

 $this->price = $par;

 }

 function getPrice(){

 echo $this->price ."
";

 }

 function setTitle($par){

 $this->title = $par;

95

Functions

NOTES

Self-Instructional Material

 }

 function getTitle(){

 echo $this->title ."
";

 }

 }

?>

8.4.2 Creating Objects in PHP

Once you defined your class, then you can create as many objects as you like

of that class type. Following is an example of how to create object using new

operator.

$physics = new Books;

$maths = new Books;

$chemistry = new Books;

Here we have created three objects and these objects are independent of each

other and they will have their existence separately. Next we will see how to

access member function and process member variables.

8.4.3 Calling Member Functions

After creating your objects, you will be able to call member functions related

to that object. One member function will be able to process member variable

of related object only. Following example shows how to set title and prices

for the three books by calling member functions.

$physics->setTitle("Physics for High School");

$chemistry->setTitle("Advanced Chemistry");

$maths->setTitle("Algebra");

$physics->setPrice(10);

$chemistry->setPrice(15);

$maths->setPrice(7);

Now you call another member functions to get the values set by in above

example −

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

96

Functions

NOTES

Self-Instructional Material

$chemistry->getPrice();

$maths->getPrice();

This will produce the following result

Physics for High School

Advanced Chemistry

Algebra

10

15

7

8.4.4 Constructor Functions

Constructor Functions are special type of functions which are called

automatically whenever an object is created. So we take full advantage of this

behaviour, by initializing many things through constructor functions. PHP

provides a special function called construct() to define a constructor. You can

pass as many as arguments you like into the constructor function. Following

example will create one constructor for Books class and it will initialize price

and title for the book at the time of object creation.

function __construct($par1, $par2) {

 $this->title = $par1;

 $this->price = $par2;

}

Now we don't need to call set function separately to set price and title. We

can initialize these two member variables at the time of object creation only.

Check following example below

$physics = new Books("Physics for High School", 10);

$maths = new Books ("Advanced Chemistry", 15);

$chemistry = new Books ("Algebra", 7);

/* Get those set values */

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

$chemistry->getPrice();

$maths->getPrice();

97

Functions

NOTES

Self-Instructional Material

This will produce the following result

 Physics for High School

 Advanced Chemistry

 Algebra

 10

 15

 7

Destructor

Like a constructor function you can define a destructor function using

function destruct(). You can release all the resources with-in a destructor.

Inheritance

PHP class definitions can optionally inherit from a parent class definition by

using the extends clause. The syntax is as follows

class Child extends Parent {

 <definition body>

}

The effect of inheritance is that the child class (or subclass or derived class)

has the following characteristics

 Automatically have all the member variable declarations of the parent

class.

 Automatically has all the same a member function as the parent,

which (by default) will work the same way as those functions do in

the parent.

Following example inherits Books class and adds more functionality based on

the requirement.

class Novel extends Books {

 var $publisher;

 function setPublisher($par){

 $this->publisher = $par;

 }

98

Functions

NOTES

Self-Instructional Material

 function getPublisher(){

 echo $this->publisher. "
";

 }

}

8.4.5 Function Overriding

Function definitions in child classes override definitions with the same name

in parent classes. In a child class, we can modify the definition of a function

inherited from parent class. In the following example getPrice and getTitle

functions are overridden to return some values.

function getPrice() {

 echo $this->price . "
";

 return $this->price;

}

 function getTitle(){

 echo $this->title . "
";

 return $this->title;

}

Public Members

Unless you specify otherwise, properties and methods of a class are public.

That is to say, they may be accessed in three possible situations.

 From outside the class in which it is declared

 From within the class in which it is declared

 From within another class that implements the class in which it is

declared

Till now we have seen all members as public members. If you wish to limit

the accessibility of the members of a class then you define class members as

private or protected.

Private members

By designating a member private, you limit its accessibility to the class in

which it is declared. The private member cannot be referred to from classes

that inherit the class in which it is declared and cannot be accessed from

outside the class.A class member can be made private by using private

keyword infront of the member.

99

Functions

NOTES

Self-Instructional Material

class MyClass {

 private $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 private function myPrivateFunction() {

 return("I'm not visible outside!");

 }

}

When MyClass class is inherited by another class using extends,

myPublicFunction() will be visible, as will $driver. The extending class will

not have any awareness of or access to myPrivateFunction and $car, because

they are declared private.

Protected members

A protected property or method is accessible in the class in which it is

declared, as well as in classes that extend that class. Protected members are

not available outside of those two kinds of classes. A class member can be

made protected by using protected keyword in front of the member.Here is

different version of MyClass

class MyClass {

 protected $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

100

Functions

NOTES

Self-Instructional Material

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 protected function myPrivateFunction() {

 return("I'm visible in child class!");

 }

}

8.4.6 Interfaces

Interfaces are defined to provide a common function names to the

implementers. Different implementors can implement those interfaces

according to their requirements. You can say, interfaces are skeletons which

are implemented by developers.As of PHP5, it is possible to define an

interface like below

interface Mail {

 public function sendMail();

}

Then, if another class implemented that interface, like this −

class Report implements Mail {

 // sendMail() Definition goes here

}

 function toString() {

 return($this->_lastName .", " .$this->_firstName);

 }

}

class NameSub1 extends Name {

 var $_middleInitial;

 function NameSub1($first_name, $middle_initial, $last_name) {

 Name::Name($first_name, $last_name);

 $this->_middleInitial = $middle_initial;

 }

101

Functions

NOTES

Self-Instructional Material

 function toString() {

 return(Name::toString() . " " . $this->_middleInitial);

 }

}

8.5 STRING MANIPULATION AND REGULAR

EXPRESSION

Strings that are delimited by double quotes (as in "this") are pre-processed in

both the following two ways by PHP. Certain character sequences beginning

with backslash (\) are replaced with special characters. Variable names

(starting with $) are replaced with string representations of their values.The

escape-sequence replacements are

\n is replaced by the newline character

\r is replaced by the carriage-return character

\t is replaced by the tab character

\$ is replaced by the dollar sign itself ($)

\" is replaced by a single double-quote (")

\\ is replaced by a single backslash (\)

8.5.1 String Concatenation Operator

To concatenate two string variables together, use the dot (.) operator

 Live Demo

<?php

 $string1="Hello World";

 $string2="1234";

 echo $string1 . " " . $string2;

?>

This will produce the following result −

Hello World 1234

If we look at the code above you see that we used the concatenation operator

two times. This is because we had to insert a third string.Between the two

string variables we added a string with a single character, an empty space, to

separate the two variables.

102

Functions

NOTES

Self-Instructional Material

Using the strlen() function

The strlen() function is used to find the length of a string.Let's find the length

of our string "Hello world!"

 Live Demo

<?php

 echo strlen("Hello world!");

?>

This will produce the following result −

12

The length of a string is often used in loops or other functions, when it is

important to know when the string ends. (i.e. in a loop, we would want to

stop the loop after the last character in the string)

Using the strpos() function

The strpos() function is used to search for a string or character within a

string.If a match is found in the string, this function will return the position of

the first match. If no match is found, it will return FALSE.Let's see if we can

find the string "world" in our string

 Live Demo

<?php

 echo strpos("Hello world!","world");

?>

This will produce the following result −

 6

As you see the position of the string "world" in our string is position 6. The

reason that it is 6, and not 7, is that the first position in the string is 0, and not

1

 Regular Expressions

Regular expressions are nothing more than a sequence or pattern of

characters it. They provide the foundation for pattern-matching functionality.

Using regular expression you can search a particular string inside a another

string, you can replace one string by another string and you can split a string

into many chunks.PHP offers functions specific to two sets of regular

expression functions, each corresponding to a certain type of regular

expression. You can use any of them based on your comfort.

 POSIX Regular Expressions

103

Functions

NOTES

Self-Instructional Material

 PERL Style Regular Expressions

 POSIX Regular Expressions

The structure of a POSIX regular expression is not dissimilar to that of a

typical arithmetic expression: various elements (operators) are combined to

form more complex expressions.

The simplest regular expression is one that matches a single character, such

as g, inside strings such as g, haggle, or bag. Let’s give explanation for few

concepts being used in POSIX regular expression. After that we will

introduce you with regular expression related functions.

Brackets

Brackets ([]) have a special meaning when used in the context of regular

expressions. They are used to find a range of characters.

[0-9]

It matches any decimal digit from 0 through 9.

Quantifiers

The frequency or position of bracketed character sequences and single

characters can be denoted by a special character. Each special character

having a specific connotation. The +, *, ?, {int. range}, and $ flags all follow

a character sequence.

Sr.No Expression & Description

1 p+ It matches any string containing at least one p

.

a p followed by zero or more instances of the sequence php.

Predefined Character Ranges

For your programming convenience several predefined character ranges, also

known as character classes, are available. Character classes specify an entire

range of characters, for example, the alphabet or an integer set

Sr.No Expression & Description

1 [[:alpha:]] It matches any string containing alphabetic characters aA

through zZ.

PHP's Regexp POSIX Functions

PHP currently offers seven functions for searching strings using POSIX-style

regular expressions

104

Functions

NOTES

Self-Instructional Material

Sr.No Function & Description

1 ereg() The ereg() function searches a string specified by string

for a string specified by pattern, returning true if the pattern is found, and

false otherwise.

8.6 FILE HANDLING AND DATA STORAGE

It can include the content of a PHP file into another PHP file before the

server executes it. There are two PHP functions which can be used to

included one PHP file into another PHP file.

 The include() Function

 The require() Function

This is a strong point of PHP which helps in creating functions, headers,

footers, or elements that can be reused on multiple pages. This will help

developers to make it easy to change the layout of complete website with

minimal effort. If there is any change required then instead of changing

thousands of files just change included file.

8.6.1 The include() Function

The include() function takes all the text in a specified file and copies it into

the file that uses the include function. If there is any problem in loading a file

then, the include() function generates a warning but the script will continue

execution. Assume you want to create a common menu for your website.

Then create a file menu.php with the following content.

Home -

ebXML -

AJAX -

PERL

Now create as many pages as you like and include this file to create header.

For example now your test.php file can have following content.

<html>

 <body>

 <?php include("menu.php"); ?>

 <p>This is an example to show how to include PHP file!</p>

 </body>

</html>

It will produce the following result

105

Functions

NOTES

Self-Instructional Material

Include

8.6.2 The require() Function

The require() function takes all the text in a specified file and copies it into

the file that uses the include function. If there is any problem in loading a file

then the require() function generates a fatal error and halt the execution of the

script. So there is no difference in require() and include() except they handle

error conditions. It is recommended to use the require() function instead of

include(), because scripts should not continue executing if files are missing or

misnamed.

You can try using above example with require() function and it will generate

same result. But if you will try following two examples where file does not

exist then you will get different results.

<html>

 <body>

 <?php include("xxmenu.php"); ?>

 <p>This is an example to show how to include wrong PHP file!</p>

 </body>

</html>

This will produce the following result −

This is an example to show how to include wrong PHP file!

Now lets try same example with require() function.

<html>

 <body>

 <?php require("xxmenu.php"); ?>

 <p>This is an example to show how to include wrong PHP file!</p>

 </body>

</html>

This time file execution halts and nothing is displayed.

Check your Progress

1. What arethe Concepts of PHP?

2. What are Arrays?

3. What is Multidimensional Array?

4. What areConstructor Functions?

5. What are Function Overriding?

106

Functions

NOTES

Self-Instructional Material

8.7 ANSWERS TO CHECK YOUR PROGRESS

1. The Concepts of PHP are:

 Function

 Strings

 Arrays

 OOP

 Regular Expression

 File Handling

2. An array is a data structure that stores one or more similar type of

values in a single value. For example if you want to store 100

numbers then instead of defining 100 variables it’s easy to define an

array of 100 length. is called array index.

3. A multi-dimensional array each element in the main array can also be

an array. And each element in the sub-array can be an array, and so

on. Values in the multi-dimensional array are accessed using multiple

indexes.

4. Constructor Functions are special type of functions which are called

automatically whenever an object is created. So, we take full

advantage of this behaviour, by initializing many things through

constructor functions. PHP provides a special function called

construct () to define a constructor.

5. Function definitions in child classes override definitions with the

same name in parent classes. In a child class, we can modify the

definition of a function inherited from parent class.

 8.8 SUMMARY
 A multi-dimensional array each element in the main array can also be

an array.

 Object is an individual instance of the data structure defined by a

class. You define a class once and then make many objects that

belong to it. Objects are also known as instance.

 Polymorphism is an object oriented concept where same function can

be used for different purposes. For example function name will

remain same but it takes different number of arguments and can do

different task.
 Overloading is a type of polymorphism in which some or all of

operators have different implementations depending on the types of
 their arguments. Similarly functions can also be overloaded with

different implementation.

8.9 KEYWORDS

Function: A function is a piece of code which takes one more input in the

form of parameter and does some processing and returns a value.

Associative array: An array with strings as index. This stores element values

in association with key values rather than in a strict linear index order.

107

Functions

NOTES

Self-Instructional Material

Multidimensional array: An array containing one or more arrays and values

are accessed using multiple indices

Inheritance: When a class is defined by inheriting existing function of a

parent class then it is called inheritance. Here child class will inherit all or

few member functions and variables of a parent class.

Parent class: A class that is inherited from by another class. This is also

called a base class or super class.

8.10 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. What are Interfaces?

2. What is String Manipulation?

3. Explain about Regular Expression?

4. What is the include () function?

5. What is the require () function?

Long Answer questions:

1. Explain briefly about Object Oriented Concepts?

2. Explain about Arrays and its Types?

3. Explain about Functions?

8.11. FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

108

Php and Mysql Database

NOTES

Self-Instructional Material

UNIT- 9 PHP AND MySQL DATABASE

Structure

9.0 Introduction

9.1 Objective

9.2 PHP and MySQL

9.2.1 Connecting to the MySQL Server

9.2.2 Web Interface with Apache, MySQL, and PHP

9.3 PHP and LDAP

9.4 PHP Connectivity

9.5 Sending and Receiving E-mails

9.5.1 Sending HTML email

9.5.2 Sending Attachments with Email

9.6 Debugging and Error Handling

9.6.1 Defining Custom Error Handling Function

9.6.2 Possible Error levels

9.6.3 Exceptions Handling

9.7 Templates

9.8 Answers to Check Your Progress

9.9 Summary

9.10 Keywords

9.11 Self Assessment Questions and Exercises

9.12 Further Readings

9.0 INTRODUCTION

The open source software PHP programming is combined with other backend

open source available software’s for creation of real time applications. This

unit covers the advance concepts of PHP for better programming skills in

connection of PHP with other languages.

9.1 OBJECTIVE

This unit helps you to

 Understand PHP and SQl

 Combine PHP with PDAP

 PHP connectivity and error handling with debugging

9.2 PHP AND MYSQL

MySQL easily fits into server-side programming languages, through a

domain. Before your MySQL functions will be recognizable, make sure to

enable MySQL in your php.ini file. You can use MySQL commands within

109

Php and Mysql Database

NOTES

Self-Instructional Material

PHP code almost as seamlessly as you do with HTML. Numerous PHP

functions work specifically with MySQL to make your life easier.

Some of the more commonly used functions are:

 mysql_connect([$host[, $username[, $password]]]): Connects to the

MySQL server and returns a resource which is used to reference the

connection.

 mysql_select_db($database[, $resource]): Equivalent to the MySQL

command USE and sets the active database.

 mysql_query($query[, $resource]): Used to send any MySQL

command to the database server. In the case of SELECT queries, a

reference to the result set will be returned.

 mysql_fetch_array($result): Return a row of data from the query’s

result set as an associative array, numeric array or both.

o mysql_fetch_assoc($result): Return a row of data from the

query’s result set as an associative array.

 mysql_error([$resource]): Shows the error message generated by the

previous query.

9.2.1 Connecting to the MySQL Server

Before you can do anything with MySQL, you must first connect to the

MySQL server using your specific connection values. Connection variables

consist of the following parameters: Hostname: In our case, this is localhost

because everything has been installed locally. You will need to change this to

whatever host is acting as your MySQL server, if MySQL is not on the same

server.

Username and password: This is to authenticate securely over server end.

You issue this connection command with the PHP function called

mysql_connect(). As with all of your PHP/MySQL statements, you can either

put the information into variables or leave it as text in your MySQL query.

Here’s how you would do it with variables:

$host = ‘localhost’;

$user = ‘user_name’;

$pass = ‘password’;

$db = mysql_connect($host, $user, $pass);

The following statement has the same effect:

$db = mysql_connect(‘localhost’, ‘user_name’, ‘password’);

110

Php and Mysql Database

NOTES

Self-Instructional Material

For the most part, your specific needs and the way you are designing your

table will dictate what piece of code you use. Most people use the first

method for security ‘sake and put them variables in a different file. Then they

include them wherever they need to make a connection to the database.

9.2.2 Web Interface with Apache, MySQL, and PHP

phpMyAdmin is a tool written in PHP intended to handle the administration

of MySQL over the Web. Currently it can create and drop databases,

create/drop/alter tables, delete/edit/add fields, execute any SQL statement,

manage keys on fields. Features provided by the program include:

1. Web interface

2. MySQL database management

3. Import data from CSV and SQL

4. Export data to various formats: CSV, SQL, XML, PDF (via the TCPDF

library), ISO/IEC 26300 - OpenDocument Text and Spreadsheet, Word,

Excel, LaTeX and others PHP in the Web Environment

5. Administering multiple servers

6. Creating PDF graphics of the database layout

7. Creating complex queries using Query-by-example (QBE)

8. Searching globally in a database or a subset of it

9. Transforming stored data into any format using a set of predefined

functions, like displaying BLOB-data as image or download-link

10. Active query monitor (Processes)

AMP Bundles

There are many AMP bundles such as LAMP, XAMP, PHPTriad, WAMP,

MAMP, FoxServ,Etc. consists of AMP build in itself. So, there is no need to

configure AMPs manually. Someof the AMPs which are available for various

operating systems are LAMP (for Linux);WAMP (for Windows); MAMP

(for Macintosh); SAMP (for Solaris); and FAMP (forFreeBSD)

9.3 PHP AND LDAP

LDAP is the Lightweight Directory Access Protocol, and is a protocol used to

access "Directory Servers". The Directory is a special kind of database that

holds information in a tree structure. The concept is similar to your hard disk

directory structure, except that in this context, the root directory is "The

world" and the first level subdirectories are "countries". Lower levels of the

directory structure contain entries for companies, organisations or places,

while yet lower still we find directory entries for people, and perhaps

equipment or documents. To refer to a file in a subdirectory on your hard

disk, you might use something like:

111

Php and Mysql Database

NOTES

Self-Instructional Material

 /usr/local/myapp/docs

The forwards slash marks each division in the reference, and the sequence is

read from left to right. The equivalent to the fully qualified file reference in

LDAP is the "distinguished name", referred to simply as "dn". An example

dn might be:

 cn=John Smith,ou=Accounts,o=My Company,c=US

The comma marks each division in the reference, and the sequence is read

from right to left. You would read this dn as:

 country = US

 organization = My Company

 organizationalUnit = Accounts

 commonName = John Smith

In the same way as there are no hard rules about how you organise the

directory structure of a hard disk, a directory server manager can set up any

structure that is meaningful for the purpose. However, there are some

conventions that are used. The message is that you cannot write code to

access a directory server unless you know something about its structure, any

more than you can use a database without some knowledge of what is

available.

9.4 PHP CONNECTIVITY

In order to develop and run PHP Web pages three vital components need to

be installed on our computer system.Web Server − PHP will work with

virtually all Web Server software, including Microsoft's Internet

Information Server (IIS) but then most often used is freely available Apache

Server. Download Apache for free here

https://httpd.apache.org/download.cgi

Database − PHP will work with virtually all database software, including

Oracle and Sybase but most commonly used is freely available MySQL

database. Download MySQL for free here −

https://www.mysql.com/downloads/.

PHP Parser − In order to process PHP script instructions a parser must be

installed to generate HTML output that can be sent to the Web Browser.

This tutorial will guide you how to install PHP parser on your computer.

PHP Parser Installation-Before you precede it is important to make sure

that you have proper environment setup on your machine to develop your

web programs using PHP.

Type the following address into your browser's address box.

http://127.0.0.1/info.php

112

Php and Mysql Database

NOTES

Self-Instructional Material

If this displays a page showing your PHP installation related information then

it means you have PHP and Webserver installed properly. Otherwise you

have to follow given procedure to install PHP on your computer.This section

will guide you to install and configure PHP over the following four platforms

Apache Configuration

If you are using Apache as a Web Server then this section will guide you to

edit Apache Configuration Files.Just Check it here − PHP Configuration in

Apache Server

PHP.INI File Configuration

The PHP configuration file, php.ini, is the final and most immediate way to

affect PHP's functionality.

9.5 SENDING AND RECEIVING E-MAILS

Windows users should ensure that two directives are supplied. The first is

called SMTP that defines your email server address. The second is called

send mail from which defines your own email address. The configuration for

Windows should look something like this −

[mail function]

; For Win32 only.

SMTP = smtp.secureserver.net

; For win32 only

sendmail_from = webmaster@tutorialspoint.com

Linux users simply need to let PHP know the location of their send mail

application. The path and any desired switches should be specified to the

send mail_path directive. The configuration for Linux should look something

like this −

[mail function]

; For Win32 only.

SMTP =

; For win32 only

sendmail_from =

; For Unix only

sendmail_path = /usr/sbin/sendmail -t -i

Now you are ready to go −

Sending plain text email

113

Php and Mysql Database

NOTES

Self-Instructional Material

PHP makes use of mail() function to send an email. This function requires

three mandatory arguments that specify the recipient's email address, the

subject of the message and the actual message additionally there are other

two optional parameters.

mail(to, subject, message, headers, parameters);

Here is the description for each parameters.

Sr.No Parameter & Description

1 to Required. Specifies the receiver / receivers of the email

2 subject Required. Specifies the subject of the email. This parameter

cannot contain any newline characters

3 message Required. Defines the message to be sent. Each line should be

separated with a LF (\n). Lines should not exceed 70 characters

4 headers Optional. Specifies additional headers, like From, Cc, and Bcc.

The additional headers should be separated with a CRLF (\r\n)

5 parameters Optional. Specifies an additional parameter to the send mail

program

As soon as the mail function is called PHP will attempt to send the email then

it will return true if successful or false if it is failed. Multiple recipients can

be specified as the first argument to the mail() function in a comma separated

list.

9.5.1 Sending HTML email

When you send a text message using PHP then all the content will be treated

as simple text. Even if you will include HTML tags in a text message, it will

be displayed as simple text and HTML tags will not be formatted according

to HTML syntax. But PHP provides option to send an HTML message as

actual HTML message.While sending an email message you can specify a

Mime version, content type and character set to send an HTML email.

Example

Following example will send an HTML email message to

xyz@somedomain.com copying it to afgh@somedomain.com. You can code

this program in such a way that it should receive all content from the user and

then it should send an email.

<html>

 <head>

 <title>Sending HTML email using PHP</title>

 </head>

 <body>

114

Php and Mysql Database

NOTES

Self-Instructional Material

 <?php

 $to = "xyz@somedomain.com";

 $subject = "This is subject";

 $message = "This is HTML message.";

 $message .= "<h1>This is headline.</h1>";

 $header = "From:abc@somedomain.com \r\n";

 $header .= "Cc:afgh@somedomain.com \r\n";

 $header .= "MIME-Version: 1.0\r\n";

 $header .= "Content-type: text/html\r\n";

 $retval = mail ($to,$subject,$message,$header);

 if($retval == true) {

 echo "Message sent successfully...";

 }else {

 echo "Message could not be sent...";

 }

 ?>

 /body>

</html>

9.5.2 Sending Attachments with Email

To send an email with mixed content requires to set Content-type header to

multipart/mixed. Then text and attachment sections can be specified within

boundaries. A boundary is started with two hyphens followed by a unique

number which can not appear in the message part of the email. A PHP

function md5() is used to create a 32 digit hexadecimal number to create

unique number. A final boundary denoting the email's final section must also

end with two hyphens.

<?php

 // request variables // important

 $from = $_REQUEST["from"];

 $emaila = $_REQUEST["emaila"];

 $filea = $_REQUEST["filea"];

 if ($filea) {

 function mail_attachment ($from , $to, $subject, $message,

$attachment){

115

Php and Mysql Database

NOTES

Self-Instructional Material

 $fileatt = $attachment; // Path to the file

 $fileatt_type = "application/octet-stream"; // File Type

 $start = strrpos($attachment, '/') == -1 ?

 strrpos($attachment, '//') : strrpos($attachment, '/')+1;

 $fileatt_name = substr($attachment, $start,

 strlen($attachment)); // Filename that will be used for the

 file as the attachment

 $email_from = $from; // Who the email is from

 $subject = "New Attachment Message";

 $email_subject = $subject; // The Subject of the email

 $email_txt = $message; // Message that the email has in it

 $email_to = $to; // Who the email is to

 $headers = "From: ".$email_from;

 $file = fopen($fileatt,'rb');

 $data = fread($file,filesize($fileatt));

 fclose($file);

$msg_txt="\n\n You have recieved a new attachment message from

$from";

 $semi_rand = md5(time());

 $mime_boundary = "==Multipart_Boundary_x{$semi_rand}x";

$headers .= "\nMIME-Version: 1.0\n" . "Content-Type:

multipart/mixed;\n" . "

 boundary=\"{$mime_boundary}\"";

 $email_txt .= $msg_txt;

$email_message .= "This is a multi-part message in MIME

format.\n\n" .

 "--{$mime_boundary}\n" . "Content-Type:text/html;

 charset = \"iso-8859-1\"\n" . "Content-Transfer-Encoding: 7bit\n\n" .

 $email_txt . "\n\n";

 $data = chunk_split(base64_encode($data));

 $email_message .= "--{$mime_boundary}\n" . "Content-Type:

{$fileatt_type};\n" .

 " name = \"{$fileatt_name}\"\n" . //"Content-Disposition:

attachment;\n" .

 //" filename = \"{$fileatt_name}\"\n" . "Content-Transfer-Encoding:

116

Php and Mysql Database

NOTES

Self-Instructional Material

 base64\n\n" . $data . "\n\n" . "--{$mime_boundary}--\n";

 $ok = mail($email_to, $email_subject, $email_message, $headers);

 if($ok) {

 echo "File Sent Successfully.";

 unlink($attachment); // delete a file after attachment sent.

 }else {

 die("Sorry but the email could not be sent. Please go back and try

again!");

 }

 }

 move_uploaded_file($_FILES["filea"]["tmp_name"],

 'temp/'.basename($_FILES['filea']['name']));

 mail_attachment("$from", "youremailaddress@gmail.com",

 "subject", "message", ("temp/".$_FILES["filea"]["name"]));

 }

?>

<html>

 <head>

 <script language = "javascript" type = "text/javascript">

 function CheckData45() {

 with(document.filepost) {

 if(filea.value ! = "") {

 document.getElementById('one').innerText =

 "Attaching File ... Please Wait";

 }

 }

 }

 </script>

 </head>

 <body>

 <table width = "100%" height = "100%" border = "0"

 cellpadding = "0" cellspacing = "0">

 <tr>

 <td align = "center">

117

Php and Mysql Database

NOTES

Self-Instructional Material

 <form name = "filepost" method = "post"

 action = "file.php" enctype = "multipart/form-data" id = "file">

 <table width = "300" border = "0" cellspacing = "0"

 cellpadding = "0">

 <tr valign = "bottom">

 <td height = "20">Your Name:</td>

 </tr>

 <tr>

 <td><input name = "from" type = "text"

 id = "from" size = "30"></td>

 </tr>

 <tr valign = "bottom">

 <td height = "20">Your Email Address:</td>

 </tr>

 <tr>

 <td class = "frmtxt2"><input name = "emaila"

 type = "text" id = "emaila" size = "30"></td>

 </tr>

 <tr>

 <td height = "20" valign = "bottom">Attach File:</td>

 </tr>

 <tr valign = "bottom">

 <td valign = "bottom"><input name = "filea"

 type = "file" id = "filea" size = "16"></td>

 </tr>

 <tr>

 <td height = "40" valign = "middle"><input

 name="Reset2" type="reset" id ="Reset2" value="Reset">

 <input name = "Submit2" type = "submit"

 value = "Submit" onClick = "return CheckData45()"></td>

 </tr>

 </table>

 </form>

 <center>

118

Php and Mysql Database

NOTES

Self-Instructional Material

 <table width = "400">

 <tr>

 <td id = "one">

 </td>

 </tr>

 </table>

 </center>

 </td>

 </tr>

 </table>

 </body>

</html>

9.6 DEBUGGING AND ERROR HANDLING

Programs rarely work correctly the first time. Many things can go wrong in

your programs that cause the PHP interpreter to generate an error message.

You have a choice about where those error messages go. The messages can

be sent along with other program output to the web browser. They can also be

included in the web server error log. To make error messages display in the

browser, set the display errors configuration directive to on. To send errors to

the web server error log, set log errors to on. You can set them both to on if

you want error messages in both places.

PHP defines some constants you can use to set the value of error_reporting

such that only errors of certain types get reported: E_ALL (for all errors

except strict notices), E_PARSE (parse errors), E_ERROR (fatal errors),

E_WARNING (warnings), E_NOTICE (notices), and E_STRICT (strict

notices). While writing your PHP program, it is a good idea to use PHP-

aware editors like BBEdit or Emacs. One of the special special features of

these editors is syntax highlighting. It changes the color of different parts of

your program based on what those parts are. For example, strings are pink,

keywords such as if and while are blue, comments are grey, and variables are

black.

Another feature is quote and bracket matching, which helps to make sure that

your quotes and brackets are balanced. When you type a closing delimiter

such as }, the editor highlights the opening { that it matches. There are

following points which need to be verified while debugging your program.

Missing Semicolons − Every PHP statement ends with a semicolon (;). PHP

doesn't stop reading a statement until it reaches a semicolon. If you leave out

the semicolon at the end of a line, PHP continues reading the statement on the

following line.

119

Php and Mysql Database

NOTES

Self-Instructional Material

Not Enough Equal Signs − When you ask whether two values are equal in a

comparison statement, you need two equal signs (==). Using one equal sign

is a common mistake.

Misspelled Variable Names − If you misspelled a variable then PHP

understands it as a new variable. Remember: To PHP, $test is not the same

variable as $Test.

Missing Dollar Signs − A missing dollar sign in a variable name is really

hard to see, but at least it usually results in an error message so that you know

where to look for the problem.

Troubling Quotes − You can have too many, too few, or the wrong kind of

quotes. So check for a balanced number of quotes.

Missing Parentheses and curly brackets − They should always be in pairs.

Array Index − All the arrays should start from zero instead of 1.

Moreover, handle all the errors properly and direct all trace messages into

system log file so that if any problem happens then it will be logged into

system log file and you will be able to debug that problem.

Error handling is the process of catching errors raised by your program and

then taking appropriate action. If you would handle errors properly then it

may lead to many unforeseen consequences. It’s very simple in PHP to

handle an errors.

Using die() function

While writing your PHP program you should check all possible error

condition before going ahead and take appropriate action when required.Try

following example without having /tmp/test.xt file and with this file.

<?php

 if(!file_exists("/tmp/test.txt")) {

 die("File not found");

 }else {

 $file = fopen("/tmp/test.txt","r");

 print "Opend file sucessfully";

 }

 // Test of the code here.

?>

120

Php and Mysql Database

NOTES

Self-Instructional Material

This way you can write an efficient code. Using above technique you can

stop your program whenever it errors out and display more meaningful and

user friendly message.

9.6.1 Defining Custom Error Handling Function

You can write your own function to handling any error. PHP provides you a

framework to define error handling function. This function must be able to

handle a minimum of two parameters (error level and error message) but can

accept up to five parameters (optionally: file, line-number, and the error

context)

Syntax

error_function(error_level,error_message,

error_file,error_line,error_context);

Sr.No Parameter & Description

1 error_level Required - Specifies the error report level for the user

defined error. Must be a value number

2 error_message Required - Specifies the error message for the user-

defined error

3 error_file Optional - Specifies the file name in which the error

occurred

4 error_line Optional - Specifies the line number in which the error

occurred

5 error_context Optional - Specifies an array containing every variable

and their values in use when the error occurred

9.6.2 Possible Error levels

These error report levels are the different types of error the user-defined error

handler can be used for. These values cab used in combination using |

operator

Sr.No Constant & Description

1 E_ERROR Fatal run-time errors. Execution of the script is halted

2 E_WARNING Non-fatal run-time errors. Execution of the script is not

halted

3 E_PARSE Compile-time parse errors. Parse errors should only be

generated by the parser

4 E_NOTICE Run-time notices. The script found something that might be

an error, but could also happen when running a script normally

5 E_CORE_ERROR Fatal errors that occur during PHP's initial start-up.

121

Php and Mysql Database

NOTES

Self-Instructional Material

 int error_reporting ([int $level])

Following is the way you can create one error handling function −

<?php

 function handleError($errno, $errstr,$error_file,$error_line) {

 echo "Error: [$errno] $errstr - $error_file:$error_line";

 echo "
";

 echo "Terminating PHP Script";

 die();

 }

?>

9.6.3 Exceptions Handling

PHP 5 has an exception model similar to that of other programming

languages. Exceptions are important and provide a better control over error

handling. Let’s explain their new keyword related to exceptions.

Try − A function using an exception should be in a "try" block. If the

exception does not trigger, the code will continue as normal. However if the

exception triggers, an exception is "thrown".

Throw − This is how you trigger an exception. Each "throw" must have at

least one "catch".

Catch − A "catch" block retrieves an exception and creates an object

containing the exception information.

When an exception is thrown, code following the statement will not be

executed, and PHP will attempt to find the first matching catch block. If an

exception is not caught, a PHP Fatal Error will be issued with an "Uncaught

Exception. Exception can be thrown, and caught ("catched") within PHP.

Code may be surrounded in a try block. Each try must have at least one

corresponding catch block. Multiple catch blocks can be used to catch

different classes of exceptions. Exceptions can be thrown (or re-thrown)

within a catch block.

Example

Following is the piece of code, copy and paste this code into a file and verify

the result.

122

Php and Mysql Database

NOTES

Self-Instructional Material

<?php

 try {

 $error = 'Always throw this error';

 throw new Exception($error);

 // Code following an exception is not executed.

 echo 'Never executed';

 }catch (Exception $e) {

 echo 'Caught exception: ', $e->getMessage(), "\n";

 }

 // Continue execution

 echo 'Hello World';

?>

In the above example $e->getMessage function is used to get error message.

There are following functions which can be used from Exception class.

getMessage() − message of exception

getCode() − code of exception

getFile() − souce filename

getLine() − source line

getTrace() − n array of the backtrace()

getTraceAsString() − formated string of trace

9.7 TEMPLATES

Many programming instructors emphasize separating content, layout, and

data. However, the way PHP is often written, it combines all three elements.

As a response, web developers often use some form of templating system to

try to separate the content from the view. The simplest form of a template is

something like the following code:

<?php include_once("vars.php") ?>

<!doctype html>

<html lang="en">

<head>

 <meta charset="UTF-8">

123

Php and Mysql Database

NOTES

Self-Instructional Material

 <title><?=$title?></title>

</head>

<body>

 <h1><?=$heading?></h1>

 <div id = "main">

 <?=$content?>

 </div>

 <div id = "footer">

 <?=$footer?>

 </div>

</body>

</html>

The page holds the structure, but none of the actual contents. The contents are

stored in PHP variables, which are stored in another file, called (in this

example) vars.php. Here’s what vars.php might look like:

<?php

$title = "template demo";

$heading = "Template Demo";

$content = <<<HERE

This is a very simple template example, which allows the user to load content

as variables from an external file. Of course, template systems get much more

complex than this.

HERE;

$footer = "from HTML5 / CSS All in One for Dummies";

?>

In this extremely simple example, the second PHP file simply defines

variables containing the various values, achieving separation of data from

view. Often, the secondary PHP file is more sophisticated, grabbing contents

from a database or other storage medium

124

Php and Mysql Database

NOTES

Self-Instructional Material

9.8 ANSWERS TO CHECK YOUR PROGRESS

1. Python is the open source programming language which is very easy

and effective among programmers. This unit helps the user to start

from the basic of python in defining their syntax, control and loops

which makes the beginners to learn and understand more easily.

2. There are three numeric types in Python:

 int

 float

 complex

3. Immutable Objects are of in-built types like int, float, bool, string,

unicode, tuple. In simple words, an immutable object can’t be

changed after it is created.

4. A tuple is a sequence of immutable Python objects. Tuples are

sequences, just like lists. The differences between tuples and lists are,

the tuples cannot be changed unlike lists and tuples use parentheses,

whereas lists use square brackets.

5. Python conditional statements are also known as selection

statements.Among multiple options only one statement is selected and

executed is selection statements.Conditional statements in python are

if statement, if-else statements and if elif in python.

9.9 SUMMARY
 The open source software PHP programming is combined with other

backend open source available software’s for creation of real time

applications.

 phpMyAdmin is a tool written in PHP intended to handle the

administration of MySQL over the Web.

 LDAP is the Lightweight Directory Access Protocol, and is a

protocol used to access "Directory Servers".

 In order to develop and run PHP Web pages three vital components

need to be installed on our computer system.

 Windows users should ensure that two directives are supplied. The

first is called SMTP that defines your email server address. The

second is called send mail from which defines your own email

address.

9.10 KEYWORDS

Error handling: It is the process of catching errors raised by your program

and then taking appropriate action.

Check your Progress

1. What is PHP?

2. What is LDAP?

3. What are Missing Semicolons?

4. What are Missing Dollar Signs?

5. What are templates?

125

Php and Mysql Database

NOTES

Self-Instructional Material

Missing Semicolons − Every PHP statement ends with a semicolon (;). PHP

doesn't stop reading a statement until it reaches a semicolon.

Catch: A "catch" block retrieves an exception and creates an object

containing the exception information.

9.11 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. What arePossible Error levels?

2. Define Custom Error Handling Function?

3. Define Debugging and Error Handling?

4. What areAMP Bundles?

5. Explain about combine PHP with PDAP?

Long Answer questions:

1. Explain briefly PHP and LDAP?

2. Explain about Sending and Receiving E-Mails?

3. Explain about Debugging and Error Handling?

4. Explain about Exceptions Handling?

9.12 FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

126

Syntax And Style

NOTES

Self-Instructional Material

BLOCK – IV

OPEN SOURCE PROGRAMMING

LANGUAGE PYTHON

UNIT -10 SYNTAX AND STYLE

Structure

10.0 Introduction

10.1 Objective

10.2 Syntax and Style

10.3 Creating an Object in Python

10.4 Python Numbers

10.5 Sequence

10.6 Strings

10.7 Lists

10.7.1 Creating List

10.7.2 List Slices

10.7.3 List Methods

10.7.4 List Loop

10.7.5 List Mutability

10.7.6 List Aliasing

10.7.7 Cloning a List

10.7.8 Deleting List values

10.7.9 Basic List Operations

10.7.10 Advanced List Processing

10.8 Tuples: Tuple Assignment, Tuple as Return Value

10.8.1 Tuple Creation

10.8.2 Tuple Slicing or Accessing Values in Tuples

10.8.3 Tuple Mutability or Updating Tuples

10.8.4 Delete Tuple Elements

10.8.5 Basic Tuples Operations

10.8.6 Indexing, Slicing and Matrixes

10.8.7 No Enclosing Delimiters

10.8.8 Built-in Tuple Functions

10.9 Dictionary

10.9.1 Accessing Values in Dictionary

10.9.2 Updating Dictionary

127

Syntax And Style

NOTES

Self-Instructional Material

10.9.3 Delete Dictionary Elements

10.9.4 Properties of Dictionary Keys

10.9.5 Built-in Dictionary Functions & Methods

10.9.6 Methods

10.10 Control Flow

10.10.1 if statement

10.10.2 if…else statement

10.10.3 if…elif…else statement

10.10.4 Nested if statement:

10.11 Iteration (Looping Statements)

10.11.1 While statement

10.11.2 Nested while loop

10.11.3 Using else statement with while loops

10.11.4. The Infinite while Loop

10.11.5 for loop

10.11.6 Nested for loop

10.11.7 Using else statement with for loops

10.11.8 for loop using Range

10.11.9 for loop using variable name

10.12 Answers to Check Your Progress

10.13 Summary

10.14 Keywords

10.15 Self Assessment Questions and Exercises

10.16 Further Readings

10.0 INTRODUCTION

Python is the open source programming language which is very easy and

effective among programmers. This unit helps the user to start from the basic

of python in defining their syntax, control and loops which makes the

beginners to learn and understand more easily

10.1 OBJECTIVE

The users after going through this unit can start programming in python by

learning the following concepts

 Phython objects

 Numbers

 Sequences

 Strings

 Loops

128

Syntax And Style

NOTES

Self-Instructional Material

10.2 SYNTAX AND STYLE

 We learned in the previous page, Python syntax can be executed by writing

directly in the Command Line:

>>> print("Hello, World!")

Hello, World!

Or by creating a python file on the server, using the .py file extension, and

running it in the Command Line:

C:\Users\Your Name>python myfile.py

10.3 CREATING AN OBJECT IN PYTHON

We saw that the class object could be used to access different attributes. It

can also be used to create new object instances (instantiation) of that class.

The procedure to create an object is similar to a function call.

>>> ob = MyClass()

This will create a new instance object named ob. We can access attributes of

objects using the object name prefix. Attributes may be data or method.

Method of an object are corresponding functions of that class. Any function

object that is a class attribute defines a method for objects of that class. This

means to say, since MyClass.func is a function object (attribute of class),

ob.func will be a method object.

10.4 PYTHON NUMBERS

There are three numeric types in Python:

 int

 float

Int

Int, or integer, is a whole number, positive or negative, without decimals, of

unlimited length.

Example

Integers:

x = 1

y = 35656222554887711

z = -3255522

print(type(x))

129

Syntax And Style

NOTES

Self-Instructional Material

print(type(y))

print(type(z))

Float

Float, or "floating point number" is a number, positive or negative, containing

one or more decimals.

Example

Floats:

x = 1.10

y = 1.0

z = -35.59

print(type(x))

print(type(y))

print(type(z))

Float can also be scientific numbers with an "e" to indicate the power of 10.

Complex

Complex numbers are written with a "j" as the imaginary part:

Example

Complex:

x = 3+5j

y = 5j

z = -5j

print(type(x))

print(type(y))

print(type(z))

10.5 SEQUENCE

In Python, sequence is the generic term for an ordered set. There are several

types of sequences in Python, the following three are the most important.

Lists are the most versatile sequence type. The elements of a list can be any

object, and lists are mutable - they can be changed. Elements can be

reassigned or removed, and new elements can be inserted.

130

Syntax And Style

NOTES

Self-Instructional Material

Tuples are like lists, but they are immutable - they can't be changed. Strings

are a special type of sequence that can only store characters, and they have a

special notation. However, all of the sequence operations described below

can also be used on strings.

10.6 STRINGS

A string is a sequence of characters.

Strings are the data types in Python.

Python treats single quotes the same as double quotes.

var1 = 'Hello World!'

var2 = "Python Programming"

Simple program

my_string = "Hello“

print(my_string)

Output:

Hello

String Slicing method

Given a string s, the syntax for a slice is:

s[startIndex:pastIndex]

The startIndex is the start index of the string. pastIndex is one past the

end of the slice.

If you omit the first index, the slice will start from the beginning. If

you omit the last index, the slice will go to the end of the string.

Program:

var1 = 'Hello World!'

var2 = "Python Programming"

print ("var1[0]: ", var1[0])

print("var2[1:5]: ", var2[1:5])

Output:

var1[0]: H

var2[1:5]: ytho

Program:

str = 'programiz‘

print('str = ', str)

print('str[0] = ', str[0])

print('str[-1] = ', str[-1])

print('str[1:5] = ', str[1:5])

print('str[5:-2] = ', str[5:-2])

Output:

str = programiz

str[0] = p

str[-1] = z

str[1:5] = rogr

str[5:-2] = am

131

Syntax And Style

NOTES

Self-Instructional Material

String Built in Function

1-lower()

Converts all uppercase letters in string to lowercase.

Syntax:

 s.lower()

Program:

string = "Hello World"

print (string.lower())

Output:

 Hello world

2-upper()

returns uppercase version of the string

Syntax:

 s.upper()

Program:

string = "Hello World"

print (string.upper())

Output:

 HELLO WORLD

3-strip()

returns a string with whitespace removed from the start andend

Syntax:

 s.strip()

Program:

string = "Hello World"

print (string.strip())

Output:

 HelloWorld

4-replace('old', 'new')

returns a string where all occurrences of 'old' have been replaced by

'new‘

Syntax:

 s.replace()

Program:

string = "Hello World"

print (string.replace(“Hello”,”Welcome”))

Output:

 Welcome World

5-split('delim')

returns a list of substrings separated by the given delimiter.

Syntax:

 s.split()

Program:

string = "Hello World"

print (string.split())

132

Syntax And Style

NOTES

Self-Instructional Material

Output:

 ['Hello', 'World']

6-join(list)

opposite of split(), joins the elements in the given list together using

the string as the delimiter.

Syntax:

 s.join()

Program:

string = ['Hello', 'World']

print (string.join())

Output:

 "Hello World"

7-capitalize()

Capitalizes first letter of string

Syntax:

 s.capitalize()

Program:

string = "hello world"

print (string.capitalize())

Output:

 Hello world

8-len(string)

Returns the length of the string

Syntax:

 len(string)

Program:

string = "Hello World"

print (len(string))

Output:

 10

9-isalnum()

Returns true if string has at least 1 character and all characters are

alphanumeric and false otherwise.

Syntax:

 s.isalnum()

Program:

string = "Hello World"

print (string.isalnum())

Output:

 False

10-isalpha() -

Returns true if string has at least 1 character and all characters are

alphabetic and false otherwise.

Syntax:

 s.alpha()

133

Syntax And Style

NOTES

Self-Instructional Material

Program:

string = "Hello World"

print (string.isalpha())

Output:

 True

11-isdigit()

Returns true if string contains only digits and false otherwise.

Syntax:

 s.isdigit()

Program:

string = "Hello World"

print (string.isdigit())

Output:

 False

12-islower()

Returns true if string has at least 1 cased character and all cased

characters are in lowercase and false otherwise.

Syntax:

 s.islower()

Program:

string = "Hello World"

print (string.islower())

Output:

 False

13-isnumeric()

Returns true if a unicode string contains only numeric characters and

false otherwise.

Syntax:

 s.isnumeric()

Program:

string = "Hello World"

print (string.isnumeric())

Output:

 False

14-isspace()

Returns true if string contains only whitespace characters and false

otherwise.

Syntax:

 s.isspace()

Program:

string = "Hello World"

print (string.isspace())

Output:

 --------------True

15-istitle()

Returns true if string is properly "titlecased" and false otherwise.

134

Syntax And Style

NOTES

Self-Instructional Material

Syntax:

 s.istitle()

Program:

string = "Hello World"

print (string.istitle())

Output:

 ------------True

16-isupper()

Returns true if string has at least one cased character and all cased

characters are in uppercase and false otherwise.

Syntax:

 s.isupper()

Program:

string = "Hello World"

print (string.isupper())

Output:

 False

String Module

 String module is a python script file, which contains several

number of related functions to strings that script is used as module without its

extension(.py) in other python program. This is called string module

Program:

import string #importing srting module

text = "Monty Python's Flying Circus"

print ("upper", "=>", string.upper(text))

print ("lower", "=>", string.lower(text))

print ("split", "=>", string.split(text))

print ("join", "=>", string.join(string.split(text), "+"))

print ("replace", "=>", string.replace(text, "Python", "Java"))

print ("find", "=>", string.find(text, "Python"), string.find(text,

"Java"))

Print("count", "=>", string.count(text, "n"))

Output:

upper => MONTY PYTHON'S FLYING CIRCUS

lower => monty python's flying circus

split => ['Monty', "Python's", 'Flying', 'Circus']

join => Monty+Python's+Flying+Circus

replace => Monty Java's Flying Circus

find => 6 -1

count => 3

Immutability in python:

Mutable vs Immutable Objects in Python

 Every variable in python holds an instance of an object. There are two

types of objects in python i.e. Mutable and Immutable objects.

135

Syntax And Style

NOTES

Self-Instructional Material

 Whenever an object is instantiated, it is assigned a unique object id.

The type of the object is defined at the runtime and it can’t be

changed afterwards. However, it’s state can be changed if it is a

mutable object.

 mutable objects can change their state or contents and immutable

objects can’t change their state or content.

Immutable Objects : These are of in-built types like int, float, bool, string,

unicode, tuple. In simple words, an immutable object can’t be changed after it

is created.

Example:

Python code to test that

tuples are immutable

tuple1 = (0, 1, 2, 3)

tuple1[0] = 4

print(tuple1)

Error :

Traceback (most recent call last):

 File "e0eaddff843a8695575daec34506f126.py", line 3, in

tuple1[0]=4

TypeError: 'tuple' object does not support item assignment.

10.7 LISTS

Lists are the one of data types in python.

A list contains items or elments separated by commas and enclosed

within square brackets ([]).

Lists are similar to arrays in python.

One of the differences between them is that all the items belonging to a

list can be of different data type.

Example:

 list = ['abcd', 786 , 2.23, 'john', 70.2]

10.7.1 Creating List

Creating a list is as simple as putting different comma-separated values

between square brackets. For example −

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"]

Similar to string indices, list indices start at 0, and lists can be sliced,

concatenated and so on.

136

Syntax And Style

NOTES

Self-Instructional Material

10.7.2 List Slices

Accessing List values or (List Slicing)

The values stored in a list can be accessed using the slice operator

 [:] with indexes starting at 0 in the beginning of the list and working their

way to end -1.

Example:

list = ['abcd', 786 , 2.23, 'john', 70.2]

print (list) # Prints complete list

print (list[0]) # Prints first element of the list abcd

print (list[1:3]) # Prints elements starting from 2nd till 3rd

print (list[2:]) # Prints elements starting from 3rd element

Output:

['abcd', 786, 2.23, 'john', 70.2]

['abcd‘]

[786, 2.23]

[2.23, 'john', 70.2]

10.7.3 List Methods

i) insert() method:
The method insert() inserts object obj into list at offset index.

Syntax
list.insert(index, obj) Parameters

index − This is the Index where the object obj need to be inserted.

obj − This is the Object to be inserted into the given list.

Example
aList = [123, 'xyz', 'zara', 'abc']

aList.insert(3, 2009)

print ("Final List : ", aList)

Output:
Final List : [123, 'xyz', 'zara', 2009, 'abc']

ii) remove() method:
Removes object obj from list.

Syntax
list.remove(obj)

obj − This is the Object to be removed from the given list.

Example
aList = [123, 'xyz', 'zara', 'abc', ‘kyz'];

aList.remove('xyz');

Print("List : ", aList)

aList.remove('abc');

Print("List : ", aList)

Output:
List : [123, 'zara', 'abc', ‘kyz']

List : [123, 'zara', ‘kyz']

137

Syntax And Style

NOTES

Self-Instructional Material

iii) pop() method:
The method pop() removes and returns last object or obj from the list.

Syntax
list.pop(obj = list[-1])

 obj − This is an optional parameter, index of the object to be

removed from the list.

Example
aList = [123, 'xyz', 'zara', 'abc'];

print ("A List : ", aList.pop())

print ("B List : ", aList.pop(2))

Output:
A List : abc

B List : zara

iv) reverse() method:
The method reverse() reverses objects of list in place.

Syntax
list.reverse()

Example
aList = [123, 'xyz', 'zara', 'abc', 'xyz'];

aList.reverse();

Print("List : ", aList)

Output:
List : ['xyz', 'abc', 'zara', 'xyz', 123]

v) append() method:
The method append() appends a passed obj into the existing list.

Syntax
list.append(obj)

 obj − This is the object to be appended in the list.

Example
List = [123, 'xyz', 'zara', 'abc'];

aList.append(2009);

Print("Updated List : ", aList)

Output:
Updated List : [123, 'xyz', 'zara', 'abc', 2009]

vi) extend() method:
The method extend() appends the contents of seq to list.

Syntax
list.extend(seq)

 seq − This is the list of elements

Example
aList = [123, 'xyz', 'zara', 'abc', 123];

bList = [2009, 'manni'];

aList.extend(bList)

138

Syntax And Style

NOTES

Self-Instructional Material

print("Extended List : ", aList)

Output:
Extended List : [123, 'xyz', 'zara', 'abc', 123, 2009, 'manni']

vii) sort() method:
The method sort() sorts the contents of seq to list.

Syntax
list.sort()

Example
aList = [50, 30, 40, 10, 20];

aList.sort();

print ("List : ", aList)

Output:
List : [10, 20, 30, 40, 50]

viii) index() method:
The method index() returns the lowest index in list that obj appears.

Syntax
list.index(obj)

 obj − This is the object to be find out.

Example
aList = [123, 'xyz', 'zara', 'abc'];

print ("Index for xyz : ", aList.index('xyz'))

print ("Index for zara : ", aList.index('zara'))

Output:
Index for xyz : 1

Index for zara : 2

ix) count() method:
The method count() returns count of how many times obj occurs in

list.

Syntax
list.count(obj)

 obj − This is the object to be counted in the list.

Example
aList = [123, 'xyz', 'zara', 'abc', 123];

print ("Count for 123 : ", aList.count(123))

print ("Count for zara : ", aList.count('zara'))

Output:
Count for 123 : 2

Count for zara : 1

10.7.4 List Loop

Program

fruits = ['banana', 'apple', 'mango']

for item in fruits:

 print ('Current fruit :', item)

print "Good bye!“

139

Syntax And Style

NOTES

Self-Instructional Material

Output

Current fruit : banana

Current fruit : apple

Current fruit : mango

Good bye!

Program

colors = ["red", "green", "blue", "purple"]

i = 0

while i < len(colors):

 print(colors[i])

 i += 1

Output

red

green

blue

purple

10.7.5 List Mutability

Updating List values or (List mutability)

The single or multiple elements of lists can be updated by giving the

slice on the left-hand side of the assignment operator

A List is an mutable linear data structure

Example:

list = ['abcd', 786 , 2.23, 'john', 70.2]

print ("Value available at index 2 : ")

print (list[2])

list[2] = 6.5; #List is mutable (because updating is applicable)

print ("New value available at index 2 : ")

print (list[2])

Output:

Value available at index 2 :

2.23

New value available at index 2 :

6.5

10.7.6 List Aliasing

Aliasing happens whenever one variable’s value is assigned to

another variable, because variables are just names that store references to the

values.

Program

a = [1, 2, 3]

 b = a

 print (a,b)

140

Syntax And Style

NOTES

Self-Instructional Material

print (id(a), id(b))

Output-

[1, 2, 3],[1, 2, 3]

 135023431 135023431

More importantly, changing b also changes a

b[0] = 0

print a

[0, 2, 3]

10.7.7 Cloning a List

Cloning means making an exact but separate copy:

To modify a list and also keep a copy of the original, we need to be

able to make a copy of the list itself, not just the reference.

This process is sometimes called cloning, to avoid the ambiguity of

the word copy.

List() is a built-in function in Python programming language to copy

or clone lists.

Example:

list1 = [1,2,3,4]

print('Old list: ',list1)

list2 = list(list1)

print('New copied list: ',list2)

Output:

Old list: [1, 2, 3, 4]

New copied list: [1, 2, 3, 4]

Using list() Method to Clone or Copy a List in Python

Example:

import copy

list1 = [1,2,3,4,['a','b','c']]

print('Old list: ',list1)

list2 = copy.copy(list1)

print('New coppied list: ',list2)

Output:
Old list: [1, 2, 3, 4, ['a', 'b', 'c']]

New coppied list: [1, 2, 3, 4, ['a', 'b', 'c']]

Using a slicing Method to Clone or Copy a List in Python

Program

list1 = [1,2,3,4]

print('Old list: ',list1)

list2 = list1[:]

print('New coppied list: ',list2)

Output:
Old list: [1, 2, 3, 4]

141

Syntax And Style

NOTES

Self-Instructional Material

New copied list: [1, 2, 3, 4]

10.7.8 Deleting List values

To remove a list element, the del statement can be used if the

element(s) that we want to delete is known exactly or the remove()

method if we do not know.

Example:

list1 = ['physics', 'chemistry', 1997, 2000];

Print(list1)

del list1[2];

Print("After deleting value at index 2 : ")

Print(list1)

Output:

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 :

['physics', 'chemistry', 2000]

10.7.9 Basic List Operations

1) len() function:

The method len() returns the number of elements in the list.

Syntax

len(list)

list - This is a list for which number of elements to be counted.

Example
list1, list2 = [123, 'xyz', 'zara'], [456, 'abc']

print ("First list length : ", len(list1))

print ("Second list length : ", len(list2))

Output:
First list length : 3

Second list length : 2

2) max() function:

The method max() returns the elements from the list with maximum

value.

Syntax

max(list)

list - This is a list from which max valued element to be returned.

Example

list1 = [456, 700, 200]

print ("Max value element : ", max(list1))

Output:

Max value element : 700

3) min() function:

The method min() returns the elements from the list with minimum

value.

142

Syntax And Style

NOTES

Self-Instructional Material

Syntax

min(list)

list - This is a list from which min valued element to be returned.

Example

list1 = [456, 700, 200]

print ("min value element : ", min(list1))

Output:

min value element : 200

iv) List concatenation:

The operator ‘+’ is used to concatenate (append) the list with another

list.

Example

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print (list + tinylist) # Prints concatenated lists

Output:

['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

iv) List repetition:

The operator ‘*’ is used to duplicate(repeat) the list .

Example

list = [123, 'john']

print (list * 2) # Prints list two times

Output:

[123, 'john', 123, 'john']

10.7.10 Advanced List Processing

List Comprehension

1. List comprehensions provide a concise way to define and create lists.

2. It consists of brackets containing an expression followed by a for

clause, then zero or more for or if clauses.

3. The expressions can be anything, meaning you can put in all kinds of

objects in lists.

4. The result will be a new list resulting from evaluating the expression

in the context of the for and if clauses which follow it.

5. The list comprehension always returns a result list.

6. If you used to do it like this:

Example:

new_list = []

for i in old_list:

if filter(i):

 new_list.append(expressions(i))

list comprehension

-It can obtain the same thing using list comprehension:

new_list = [expression(i) for i in old_list if filter(i)]

143

Syntax And Style

NOTES

Self-Instructional Material

-new_list The new list (result).

-expression(i) Expression is based on the variable used for each

element in the old list.

-for i in old_list The word for followed by the variable name to use,

followed by the word in the old list.

-if filter(i) Apply a filter with an If-statement.

syntax

 [expression for item in list if conditional]

creating a simple list:
x = [i for i in range(10)]

 print x

This will give the output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

create a list of squares

 squares = []

 for x in range(10):

squares.append(x**2)

print squares

Output:

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Use List Comprehension:
squares = [x**2 for x in range(10)]

print squares

Output:

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

10.8 TUPLES: TUPLE ASSIGNMENT, TUPLE AS RETURN

VALUE

A tuple is a sequence of immutable Python objects. Tuples are

sequences, just like lists. The differences between tuples and lists are, the

tuples cannot be changed unlike lists and tuples use parentheses, whereas lists

use square brackets.

10.8.1 Tuple Creation

Creating a tuple is as simple as putting different comma-separated

values. Optionally you can put these comma-separated values between

parentheses also.

Example

tup1 = ('physics', 'chemistry', 1997, 2000);

144

Syntax And Style

NOTES

Self-Instructional Material

tup2 = (1, 2, 3, 4, 5);

tup3 = "a", "b", "c", "d";

The empty tuple is written as two parentheses containing nothing −

tup1 = ();

To write a tuple containing a single value you have to include a

comma, even though there is only one value −

tup1 = (50,);

Like string indices, tuple indices start at 0, and they can be sliced,

concatenated, and so on.

10.8.2 Tuple Slicing or Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along

with the index or indices to obtain value available at that index. For example

−

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

print "tup1[0]: ", tup1[0];

print "tup2[1:5]: ", tup2[1:5];

When the above code is executed, it produces the following result

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

10.8.3 Tuple Mutability or Updating Tuples

Tuples are immutable which means you cannot update or change the values

of tuple elements. You are able to take portions of existing tuples to create

new tuples as the following example demonstrates −

tup1 = (12, 34.56);

tup2 = ('abc', 'xyz');

Following action is not valid for tuples

tup1[0] = 100;

So let's create a new tuple as follows

tup3 = tup1 + tup2;

print tup3;

When the above code is executed, it produces the following result −

(12, 34.56, 'abc', 'xyz')

10.8.4 Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of

course, nothing wrong with putting together another tuple with the undesired

elements discarded.

To explicitly remove an entire tuple, just use the del statement. For

example −

tup = ('physics', 'chemistry', 1997, 2000);

print tup;

145

Syntax And Style

NOTES

Self-Instructional Material

del tup;

print "After deleting tup : ";

print tup;

This produces the following result. Note an exception raised, this is because

after del tup tuple does not exist any more −

('physics', 'chemistry', 1997, 2000)

After deleting tup :

Traceback (most recent call last):

 File "test.py", line 9, in <module>

 print tup;

NameError: name 'tup' is not defined

10.8.5 Basic Tuples Operations
Tuples respond to the + and * operators much like strings; they mean

concatenation and repetition here too, except that the result is a new tuple,

not a string.

In fact, tuples respond to all of the general sequence operations we used on

strings in the prior chapter.

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3):

print x,

1 2 3 Iteration

10.8.6 Indexing, Slicing and Matrixes

Because tuples are sequences, indexing and slicing work the same way for

tuples as they do for strings. Assuming following input −

L = ('spam', 'Spam', 'SPAM!')

Python

Expression

Results Description

L[2] 'SPAM!' Offsets start at zero

L[-2] 'Spam' Negative: count from

the right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

10.8.7 No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without

identifying symbols, i.e., brackets for lists, parentheses for tuples, etc.,

default to tuples, as indicated in these short examples −

print 'abc', -4.24e93, 18+6.6j, 'xyz';

x, y = 1, 2;

print "Value of x , y : ", x,y;

When the above code is executed, it produces the following result −

146

Syntax And Style

NOTES

Self-Instructional Material

abc -4.24e+93 (18+6.6j) xyz

Value of x , y : 1 2

10.8.8 Built-in Tuple Functions

Python includes the following tuple functions −

Sr.No. Function Description

1 cmp(tuple1, tuple2) Compares elements of both tuples.

2 len(tuple) Gives the total length of the tuple.

3 max(tuple) Returns item from the tuple with

max value.

4 min(tuple) Returns item from the tuple with

min value.

5 tuple(seq) Converts a list into tuple.

1. cmp()

The method cmp() compares elements of two tuples.

Syntax

Following is the syntax for cmp() method −

cmp(tuple1, tuple2)

Parameters

 tuple1 − This is the first tuple to be compared

 tuple2 − This is the second tuple to be compared

Return Value

If elements are of the same type, perform the compare and return the result.

If elements are different types, check to see if they are numbers.

 If numbers, perform numeric coercion if necessary and compare.

 If either element is a number, then the other element is "larger"

(numbers are "smallest").

 Otherwise, types are sorted alphabetically by name.

If we reached the end of one of the tuples, the longer tuple is "larger." If we

exhaust both tuples and share the same data, the result is a tie, meaning that

0 is returned.

Example

tuple1, tuple2 = (123, 'xyz'), (456, 'abc')

print cmp(tuple1, tuple2)

print cmp(tuple2, tuple1)

tuple3 = tuple2 + (786,);

print cmp(tuple2, tuple3)

When we run above program, it produces following result −

-1

1

-1

2. len()

The method len() returns the number of elements in the tuple.

Syntax

len(tuple)

https://www.tutorialspoint.com/python/tuple_cmp.htm
https://www.tutorialspoint.com/python/tuple_len.htm
https://www.tutorialspoint.com/python/tuple_max.htm
https://www.tutorialspoint.com/python/tuple_min.htm
https://www.tutorialspoint.com/python/tuple_tuple.htm

147

Syntax And Style

NOTES

Self-Instructional Material

Parameters

tuple − This is a tuple for which number of elements to be counted.

Return Value

This method returns the number of elements in the tuple.

Example

The following example shows the usage of len() method.

tuple1, tuple2 = (123, 'xyz', 'zara'), (456, 'abc')

print "First tuple length : ", len(tuple1)

print "Second tuple length : ", len(tuple2)

When we run above program, it produces following result −

First tuple length : 3

Second tuple length : 2

3. max()

The method max() returns the elements from the tuple with maximum value.

Syntax

Following is the syntax for max() method −

max(tuple)

Parameters

 tuple − This is a tuple from which max valued element to be returned.

Return Value

This method returns the elements from the tuple with maximum value.

Example

The following example shows the usage of max() method.

tuple1, tuple2 = (123, 'xyz', 'zara', 'abc'), (456, 700, 200)

print "Max value element : ", max(tuple1)

print "Max value element : ", max(tuple2)

When we run above program, it produces following result −

Max value element : zara

Max value element : 700

4. min()

The method min() returns the elements from the tuple with minimum value.

Syntax

Following is the syntax for min() method −

min(tuple)

Parameters

 tuple − This is a tuple from which min valued element to be returned.

Return Value

This method returns the elements from the tuple with minimum value.

Example

The following example shows the usage of min() method.

tuple1, tuple2 = (123, 'xyz', 'zara', 'abc'), (456, 700,

200)

print "min value element : ", min(tuple1)

print "min value element : ", min(tuple2)

When we run above program, it produces following result −

min value element : 123

min value element : 200

5. tuple()

Self-Instructional

Material

148

Syntax And Style

NOTES

Self-Instructional Material

Description

The method tuple() converts a list of items into tuples

Syntax

Following is the syntax for tuple() method −

tuple(seq)

Parameters

 seq − This is a sequence to be converted into tuple.

Return Value

This method returns the tuple.

Example

The following example shows the usage of tuple() method.

aList = [123, 'xyz', 'zara', 'abc']

aTuple = tuple(aList)

print "Tuple elements : ", aTuple

When we run above program, it produces following result −

Tuple elements : (123, 'xyz', 'zara', 'abc')

10.9 DICTIONARY

Python dictionary is an unordered collection of items.

While other compound data types have only value as an element, a dictionary

has a key: value pair.

Dictionaries are optimized to retrieve values when the key is known.

• Creating a dictionary is as simple as placing items inside curly braces

{} separated by comma.

• An item has a key and the corresponding value expressed as a pair,

key: value.

• Each key is separated from its value by a colon (:), the items are

separated by commas, and the whole thing is enclosed in curly braces.

An empty dictionary without any items is written with just two curly

braces, like this: {}.

• Keys are unique within a dictionary while values may not be. The

values of a dictionary can be of any type, but the keys must be of an

immutable data type such as strings, numbers, or tuples.

10.9.1 Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along

with the key to obtain its value. Following is a simple example −

 Example:

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Name']: ", dict['Name']

print "dict['Age']: ", dict['Age']

Output

dict['Name']: Zara

dict['Age']: 7

149

Syntax And Style

NOTES

Self-Instructional Material

10.9.2 Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair,

modifying an existing entry, or deleting an existing entry as shown below in

the simple example −

Program

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

dict['Age'] = 8;

update existing entry

dict['School'] = "DPS School";

Add new entry

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

Output

dict['Age']: 8

dict['School']: DPS School

10.9.3 Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire

contents of a dictionary. You can also delete entire dictionary in a single

operation.

To explicitly remove an entire dictionary, just use the del statement.

Following is a simple example −

Program

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

del dict['Name'];

remove entry with key 'Name'

dict.clear();

remove all entries in dict

del dict ;

delete entire dictionary

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

Output

Error undefined

10.9.4 Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary

Python object, either standard objects or user-defined objects. However,

same is not true for the keys.

There are two important points to remember about dictionary keys

(a) More than one entry per key not allowed. Which means no duplicate key

is allowed. When duplicate keys encountered during assignment, the last

assignment wins.

150

Syntax And Style

NOTES

Self-Instructional Material

For example

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result −

dict['Name']: Manni

(b) Keys must be immutable. Which means you can use strings, numbers or

tuples as dictionary keys but something like ['key'] is not allowed.

Following is a simple example

dict = {['Name']: 'Zara', 'Age': 7}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result −

Traceback (most recent call last):

 File "test.py", line 3, in <module>

 dict = {['Name']: 'Zara', 'Age': 7};

TypeError: unhashable type: 'list'

10.9.5 Built-in Dictionary Functions & Methods

1.len()

Gives the total length of the dictionary. This would be equal to the

number of items in the dictionary.

Syntax:

 len(variable name)

Program:

dict = {'Name': 'Zara', 'Age': 7};

print "Length : %d" % len (dict)

Output:

Length : 2

2.str()

 Produces a printable string representation of a dictionary

Syntax:

 Str(variable name)

Program:

dict = {'Name': 'Zara', 'Age': 7};

print "Equivalent String : %s" % str (dict)

Output:

Equivalent String : {'Age': 7, 'Name': 'Zara'}

3. type()

Returns the type of the passed variable. If passed variable is

dictionary, then it would return a dictionary type.

Syntax:

 type(variable name)

Program:

dict = {'Name': 'Zara', 'Age': 7};

print "Variable Type : %s" % type (dict)

151

Syntax And Style

NOTES

Self-Instructional Material

Output:

Variable Type : <type 'dict'>

4. cmp()

The method cmp() compares two dictionaries based on key and values.

Syntax

Following is the syntax for cmp() method −

cmp(dict1, dict2)

Parameters

 dict1 − This is the first dictionary to be compared with dict2.

 dict2 − This is the second dictionary to be compared with dict1.

Return Value

This method returns 0 if both dictionaries are equal, -1 if dict1 < dict2 and 1

if dict1 > dic2.

Example

The following example shows the usage of cmp() method.

dict1 = {'Name': 'Zara', 'Age': 7};

dict2 = {'Name': 'Mahnaz', 'Age': 27};

dict3 = {'Name': 'Abid', 'Age': 27};

dict4 = {'Name': 'Zara', 'Age': 7};

print "Return Value : %d" % cmp (dict1, dict2)

print "Return Value : %d" % cmp (dict2, dict3)

print "Return Value : %d" % cmp (dict1, dict4)

When we run above program, it produces following result −

Return Value : -1

Return Value : 1

Return Value : 0

10.9.6 Methods

1.clear()

Removes all elements of dictionary dict

Syntax:

 dict.clear()

Program:

dict = {'Name': 'Zara', 'Age': 7};

print "Start Len : %d" % len(dict)

dict.clear()

print "End Len : %d" % len(dict)

Output:

Start Len : 2

End Len : 0

2.copy()

Returns a shallow copy of dictionary dict

https://www.tutorialspoint.com/python/dictionary_clear.htm
https://www.tutorialspoint.com/python/dictionary_clear.htm
https://www.tutorialspoint.com/python/dictionary_copy.htm
https://www.tutorialspoint.com/python/dictionary_copy.htm

152

Syntax And Style

NOTES

Self-Instructional Material

Syntax:

 dict.copy()

Program:

dict1 = {'Name': 'Zara', 'Age': 7};

dict2 = dict1.copy()

print "New Dictionary : %s" % str(dict2)

Output:

New Dictionary : {'Age': 7, 'Name': 'Zara'}

3.fromKeys()

Create a new dictionary with keys from seq and values set to value

Syntax:

 dict.fromkeys()

Program:

seq = ('name', 'age', 'sex')

dict = dict.fromkeys(seq)

print "New Dictionary : %s" % str(dict)

dict = dict.fromkeys(seq, 10)

print "New Dictionary : %s" % str(dict)

Output:

New Dictionary : {'age': None, 'name': None, 'sex': None} New

Dictionary : {'age': 10, 'name': 10, 'sex': 10}

4.get(key, default=None)

For key key, returns value or default if key not in dictionary

Syntax:

 dict.get(key,default=None)

Program:

dict = {'Name': 'Zabra', 'Age': 7}

print "Value : %s" % dict.get('Age')

print "Value : %s" % dict.get('Education', "Never")

Output:

Value : 7 Value : Never

5.has_key(key)

Returns true if key in dictionary dict, false otherwise

Syntax:

 dict.has_key()

Program:

https://www.tutorialspoint.com/python/dictionary_fromkeys.htm
https://www.tutorialspoint.com/python/dictionary_fromkeys.htm
https://www.tutorialspoint.com/python/dictionary_get.htm
https://www.tutorialspoint.com/python/dictionary_get.htm
https://www.tutorialspoint.com/python/dictionary_get.htm
https://www.tutorialspoint.com/python/dictionary_has_key.htm
https://www.tutorialspoint.com/python/dictionary_has_key.htm
https://www.tutorialspoint.com/python/dictionary_has_key.htm

153

Syntax And Style

NOTES

Self-Instructional Material

dict = {'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.has_key('Age')

print "Value : %s" % dict.has_key('Sex')

Output:

Value : True

Value : False

6.items()

Returns a list of dict's (key, value) tuple pairs

Syntax:

 dict.items()

Program:

dict = {'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.items()

output:

Value:[('Name': 'Zara'), ('Age': 7)]

7.keys()

 Returns list of dictionary dict's keys

 Syntax:

 dict.keys()

 Program:

dict={'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.items()

 output:

Value:[‘Name’,’Age’]

8.setdefault(key, default=None)

Similar to get(), but will set dict[key]=default if key is not already

in dict

 Syntax:

 dict.setdefault()

 Program:

dict={'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.setdefault(‘Age’,None)

print "Value : %s" % dict.setdefault(‘Sex’,None)

 output:

Value:7

Value:None

9.update(dict2)

https://www.tutorialspoint.com/python/dictionary_items.htm
https://www.tutorialspoint.com/python/dictionary_items.htm
https://www.tutorialspoint.com/python/dictionary_keys.htm
https://www.tutorialspoint.com/python/dictionary_keys.htm
https://www.tutorialspoint.com/python/dictionary_setdefault.htm
https://www.tutorialspoint.com/python/dictionary_setdefault.htm
https://www.tutorialspoint.com/python/dictionary_setdefault.htm
https://www.tutorialspoint.com/python/dictionary_update.htm
https://www.tutorialspoint.com/python/dictionary_update.htm
https://www.tutorialspoint.com/python/dictionary_update.htm

154

Syntax And Style

NOTES

Self-Instructional Material

Adds dictionary dict2's key-values pairs to dict

 Syntax:

 dict.update(new dict)

 Program:

dict={'Name': 'Zara', 'Age': 7}

dict2={‘Sex’:’female’}

dict.update(dict2)

print "Value : %s" % dict

 output:

Value: {'Name': 'Zara', 'Age': 7, ‘Sex’:’female’}

10.values()

Returns list of dictionary dict's values

 Syntax:
 dict.values()

 Program:

dict={'Name': 'Zara', 'Age': 7}

print "Value : %s" % dict.values()

 output:

Value:[7,’Zara’]

10.10 CONTROL FLOW

The statements inside your source files are generally executed from top to

bottom, in the order that they appear. Control flow statements, however,

break up the flow of execution by employing decision making, looping, and

branching, enabling your program to conditionally execute particular blocks

of code.

In python, flow control is divided into three types which are as follows

 Conditional statements

 Iterative statements

 Transfer statements

Python Conditional statements

 Python conditional statements are also known as selection statements.

 Among multiple options only one statement is selected and executed

is selection statements.

 Conditional statements in python are if statement, if-else statements

and if elif in python.

Python Iterative statements

 Python iterative statements are used to execute the same Statement

repeatedly.

 Sometimes multiple statements want to execute repeatedly is iterative

statements.

 Iterative statements in python: for loop and while loop.

https://www.tutorialspoint.com/python/dictionary_values.htm
https://www.tutorialspoint.com/python/dictionary_values.htm

155

Syntax And Style

NOTES

Self-Instructional Material

Python Transfer statements

 Transfer statements in python are the statements which are used to

transfer execution to other statements.

 Python transfer statements are break statement, continue statement

and pass statement.

Decision making statements (Conditional)

Decision making constructs with Boolean expression, an expression returns

either TRUE or FALSE

(i.e., 0-false and 1-true). Decision making structure is to perform an action or

a calculation only when a certain condition is met. There are four types of

decision making structure. They are,

1. if statement (Conditional statement)

2. if … else statement (Alternative statement)

3. elif statement (Chained condition)

4. nested if statement

10.10.1 if statement

The program evaluates the condition and will execute statement(s) or

process only if the test expression is True.

Syntax:

 if (test expression/condition):

 True statement

Program:

num = 3

if num > 0:

 print(num, "is a positive number.")

print("This is always printed.")

Output:

3 is a positive number

This is always printed

10.10.2 if…else statement

The if else statement evaluates condition and will execute body of if only

when test condition is True. If the condition is False, body of else is executed.

Syntax:

 if (test expression/condition):

 True statement

 else:

 False statement

Program:

num=3

if (num >= 0):

 print("Positive or Zero")

else:

 print("Negative number")

Output:

Positive or Zero

156

Syntax And Style

NOTES

Self-Instructional Material

10.10.3 if…elif…else statement

The elif is short for else if. It allows us to check for multiple

expressions. If the condition for if is False, it checks the condition of the

next elif block and so on. If all the conditions are False, body of else is

executed.

Syntax:

if (test expression/condition):

 True statement 1

elif (test expression/condition):

True statement 2

else:

False statement

Program:
num=3

if num > 0:

 print("Positive number")

elif num = = 0:

 print("Zero")

else:

 print("Negative number")

Output:

Positive number

10.10.4 Nested if statement

Nested conditional statements are used whenever there is a need to

check for another condition after the first condition has been evaluated as

True. if...else statement inside another if...else statement.

Syntax:

if (test expression/condition 1):

if (test expression/condition 2):

 True statement 1

else:

False statement 1

else:

False statement 2
Program:

num = int(input("Enter a number: "))

if num >= 0:

if num = = 0:

 print("Zero")

 else:

 print("Positive number")

else:

 print("Negative number")

Output:

Enter a number: 5

Positive number

157

Syntax And Style

NOTES

Self-Instructional Material

10.11 ITERATION (LOOPING STATEMENTS):

(Looping/ Repetition statement)

Loop statement is to execute a specific block of code in multiple numbers

of times. A loop is a programming control structure that facilitates the

repetition execution of a statement or group of statement. There are two types

of loop statement. They are,

1. while loop

2. for loop

10.11.1 while statement

A while loop statement in Python programming language repeatedly

executes a block of statement until the condition is True. It tests the condition

before executing the loop body.

Syntax:

while (test expression/ condition):

 body of loop

Program:

count = 0

while (count < 5):

 print ('The count is:', count)

 count = count + 1

print ("Good bye!”)

Output:

The count is:0

The count is:1

The count is:2

The count is:3

The count is:4

Good bye!

10.11.2 Nested while loop

Nesting defined as the placing of one while loop inside the body of

another while loop.

Syntax:

while (test expression/ condition):

while (test expression/ condition):

 body of loop

Program:

count = 1

while (count!=0):

 while(count<5):

 print ('The count is:', count)

 count = count + 1

print ("Good bye!”)

Output:

The count is:1

The count is:2

The count is:3

158

Syntax And Style

NOTES

Self-Instructional Material

The count is:4

Good bye!

10.11.3 Using else statement with while loops

If the else statement is used with a while loop, the else statement is executed

when the condition become false.

Program:

i=0

while i < 5:

 print(i,”is less than 5”)

 i=i+1

else:

 print(i,”is not less than 5)

Output

 0 is less than 5

 1 is less than 5

 2 is less than 5

 3 is less than 5

 4 is less than 5

 5 is not less than 5

10.11.4. The Infinite while Loop

While the loop runs continuously without termination

Program:

while (1):

 num = input("Enter a number :")

 print ("You entered: ", num)

print "Good bye!“

Output

Enter a number: 20

You entered: 20

Enter a number: 25

You entered: 25

10.11.5 for loop

for loop executes a sequence of statements that allows a code to be

repeated a certain number of times using “range” function.

Syntax:

 for variableName in <Group of numbers>:

 body of loop

Program:

num = [6, 5, 3, 8, 4, 2, 5, 4, 11]

sum = 0

for v in num:

 sum = sum+v

print("The sum is", sum)

Output:

The sum is 48

159

Syntax And Style

NOTES

Self-Instructional Material

10.11.6 Nested for Loop

Nesting defined as the placing of one for loop inside the body of

another for loop.

Syntax:

for variableName in <Group of numbers>:

 for variableName in <Group of numbers>:

body of loop

Program:

 S=0

 for i in range(3):

 for j in range(3):

 S=i+j

 Print(s)

 print(“end”)

Output:

 0

 2

4

end

10.11.7 Using else Statement with for Loops

If the else statement is used with a for loop, the else statement is

executed when the loop has exhausted iterating the list.

Program:

for i in range(0,5):

 print(i,”is less than 5”)

else:

 print(i,”is not less than 5)

Output:

 0 is less than 5

 1 is less than 5

 2 is less than 5

 3 is less than 5

 4 is less than 5

 5 is not less than 5

10.11.8. for Loop using Range

The range function specifies a range of integers:

range (start, stop)

The integers between start (inclusive) and stop (exclusive)

Syntax:

 for variableName in range (start, stop):

 statements

Example:

 for x in range(1, 6):

 print (x, "squared is", x * x)

Output:

160

Syntax And Style

NOTES

Self-Instructional Material

1 squared is 1

2 squared is 4

3 squared is 9

4 squared is 16

5 squared is 25

How to use range:

range(10) #produces the list: [0,1,2,3,4,5,6,7,8,9]

range(1, 7) #produces the list: [1,2,3,4,5,6]

range(0, 30, 5) #produces the list: [0,5,10,15,20,25]

range(5, -1, -1) #produces the list: [5,4,3,2,1,0]

10.11.9 for Loop using Variable Name

Syntax:

for variableName in listname:

statements

Program:

 list=[“apple”,”orange”,”banana”]

 for fruits in list:

 print(“current fruit:”,fruits)

 print(“End”)

Output:

 Current fruit : apple

 Current fruit : orange

 Current fruit : banana

 End

for loop using Length of the list:

Program:

 lst=[“sam”,”abc”,”zara”]

 for i in range(len(lst)):

 print(lst[i])

 print(“End”)

Output:

 Sam

 abc

 zara

 End

Check your Progress

1. What is Python?

2. What are numeric types in python?

3. What are Immutable Objects?

4. What isTuple?

5. What is Python Conditional statements?

Self-Instructional

Material

161

Syntax And Style

NOTES

Self-Instructional Material

10.12 ANSWERS TO CHECK YOUR PROGRESS

1. Python is the open source programming language which is very easy

and effective among programmers. This unit helps the user to start

from the basic of python in defining their syntax, control and loops

which makes the beginners to learn and understand more easily.

2. There are three numeric types in Python:

 int

 float

 complex

3. Immutable Objects are of in-built types like int, float, bool, string,

unicode, tuple. In simple words, an immutable object can’t be

changed after it is created.

4. A tuple is a sequence of immutable Python objects. Tuples are

sequences, just like lists. The differences between tuples and lists are,

the tuples cannot be changed unlike lists and tuples use parentheses,

whereas lists use square brackets.

5. Python conditional statements are also known as selection

statements.Among multiple options only one statement is selected and

executed is selection statements.Conditional statements in python are

if statement, if-else statements and if elif in python.

10.13 SUMMARY
 In Python, sequence is the generic term for an ordered set. There are

several types of sequences in Python, the following three are the most

important.

 Dictionary values have no restrictions. They can be any arbitrary

Python object, either standard objects or user-defined objects.

However, same is not true for the keys.

 In python, flow control is divided into three types which are as

follows: Conditional statements, Iterative statements and Transfer

statements.

 In python, flow control is divided into three types which are as

follows: Conditional statements, Iterative statements and Transfer

statements.

 Every variable in python holds an instance of an object. There are two

types of objects in python i.e. Mutable and Immutable objects.

10.14 KEYWORDS

Deleting List values: To remove a list element, the del statement can be used

if the element(s) that we want to delete is known exactly or the remove()

method

162

Syntax And Style

NOTES

Self-Instructional Material

Tuples: They are like lists, but they are immutable - they can't be changed.

Strings are a special type of sequence that can only store characters, and they

have a special notation.

String module: String module is a python script file, which contains several

number of related functions to strings that script is used as module without its

extension(.py) in other python program.

10.15 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

6. What is Python Transfer statements?

7. What is Python Iterative statements?

8. What is Iteration?

9. What are built-in Dictionary Functions & Methods?

10. What is Dictionary?

Long Answer questions:

1. Explain about Tuple and its built-in functions?

2. Explain about String Built in Function?

3. Explain about Python and its concepts?

10.16 FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

163

Files

NOTES

Self-Instructional Material

UNIT- 11 FILES

Structure

11.0 Introduction

11.1 Objective

11.2 Files

11.2.1 Types of File

11.2.1.1 Text File

11.2.1.2 Binary File

11.3 File Modes

11.3.1 File Object Attributes

11.3.2 Opening and Closing a File

11.3.3 Reading and Writing a File

11.3.4 The append()

11.3.5 File Positions

11.4 Errors and Exceptions

11.4.1 Errors

11.4.2 Parts in an Error Message

11.4.3 Built-In Exceptions

11.4.4 Exceptions

11.4.5 Error Messages that are Displayed for the Following

Exceptions

11.5 Handling an Exception

11.5.1 except Clause with No Exceptions

11.5.2 Handling Multiple Exceptions

11.5.3 The except Clause with Multiple Exceptions

11.5.4 Handling an Exception by Try/Except/Else Clause

11.5.5 Handling an Exception by Try/Except/Finally Clause

11.5.6 Raising an Exceptions

11.5.7 User-Defined Exceptions

11.6 Functions

11.7 Parameters

11.8 Arguments

11.9 Fruitful Function

11.10 Variable Scope and Lifetime

11.11 Function Recursion

11.12 Modules and Packages

11.12.1 Modules

11.12.1.1 The import Statement

164

Files

NOTES

Self-Instructional Material

11.12.1.2 Standard Modules

11.13 Classes and OOP

11.13.1 Defining a Class in Python

11.14 Execution Environment

11.15 Answers to Check Your Progress

11.16 Summary

11.17 Keywords

11.18 Self Assessment Questions and Exercises

11.19 Further Readings

11.0 INTRODUCTION

The exception handling and File handling in Python helps the users to

understand and work with programming language more efficiently. This unit

explains the concepts of Exception handling and file handling with example

programs of how it can be implemented and used in real time.

11.1 OBJECTIVE

This unit helps the user to learn and understand

 Functions in Python

 Files

 Exception Handling

 Classes and OOp

 Exceution Environment

11.2 FILES

File is a named location on disk to store related information. It is used to

permanently store data in a non-volatile memory (e.g. hard disk).

 Since, random access memory (RAM) is volatile which loses its data

when computer is turned off, we use files for future use of the data.

 In Python, there is no need for importing external library to read and

write files. Python provides an inbuilt function for creating, writing

and reading files.

 Hence, in Python, a file operation takes place in the following order.

 Open a file

 Read or write (perform operation)

 Close the file

11.2.1 Types of File

In Python, a file is categorized as

 Text file

 Binary file

11.2.1.1 Text File

 Text files are structured as a sequence of lines, where each line

includes a sequence of characters.

165

Files

NOTES

Self-Instructional Material

 It is a sequence of characters stored on a permanent medium like a

hard drive, flash memory, or CD-ROM

 A text file is a file that contains printable characters and whitespace,

organized in to lines separated by newline characters

 Each line is terminated with a special character, called the EOL

or End of Line character.

 There are several types, but the most common is the comma {,} or

newline character. It ends the current line and tells the interpreter a

new one has begun.

11.2.1.2 Binary File

 It is any type of file that is not a text file

 It can only be processed by an application that know or understand

the file’s structure.

11.3 FILE MODES

S.No Mode & Description

1.
r

Opens a file for reading only in text format. The file pointer is

placed at the beginning of the file. This is the default mode.

2.
rb

Opens a file for reading only in binary format. The file pointer

is placed at the beginning of the file. This is the default mode.

3.
r+

Opens a file for both reading and writing. The file pointer

placed at the beginning of the file.

4.
rb+

Opens a file for both reading and writing in binary format.

The file pointer placed at the beginning of the file.

5.
w

Opens a file for writing only. Overwrites the file if the file

exists. If the file does not exist, creates a new file for writing.

6.

wb

Opens a file for writing only in binary format. Overwrites the

file if the file exists. If the file does not exist, creates a new

file for writing.

7.

w+

Opens a file for both writing and reading. Overwrites the

existing file if the file exists. If the file does not exist, creates

a new file for reading and writing.

166

Files

NOTES

Self-Instructional Material

8.

wb+

Opens a file for both writing and reading in binary format.

Overwrites the existing file if the file exists. If the file does

not exist, creates a new file for reading and writing.

9.

a

Opens a file for appending. The file pointer is at the end of

the file if the file exists. That is, the file is in the append

mode. If the file does not exist, it creates a new file for

writing.

10.

ab

Opens a file for appending in binary format. The file pointer

is at the end of the file if the file exists. That is, the file is in

the append mode. If the file does not exist, it creates a new

file for writing.

11.

a+

Opens a file for both appending and reading. The file pointer

is at the end of the file if the file exists. The file opens in the

append mode. If the file does not exist, it creates a new file

for reading and writing.

12.

ab+

Opens a file for both appending and reading in binary format.

The file pointer is at the end of the file if the file exists. The

file opens in the append mode. If the file does not exist, it

creates a new file for reading and writing.

11.3.1 File Object Attributes

S.No File object attributes& Description

1
file.closed

Returns true if file is closed, false otherwise.

2
file.mode

Returns access mode with which file was opened.

3
file.name

Returns name of the file.

11.3.2 Opening and closing a file

The open ()

 To open a file using Python's built-in open() function.

 This function creates a file object, which would be utilized to call

other support methods associated with it.

167

Files

NOTES

Self-Instructional Material

 Syntax:

o file object = open(file_name [, access_mode][, buffering])

 Here are parameter details −

 file_name – The file_name argument is a string value that contains the

name of the file that you want to access.

 access_mode – The access_mode determines the mode in which the

file has to be opened, i.e., read, write, append, etc. Default file access

mode is read (r).

 buffering − If the buffering value is set to 0, no buffering takes place.

If the buffering value is 1, line buffering is performed while accessing

a file.

ExamplePrgram:

Open a file

fo = open(“days.txt", “r")

print ("Name of the file: ", fo.name)

print ("Closed or not : ", fo.closed)

print ("Opening mode : ", fo.mode)

fo.close()

Output:

Name of the file: file1.txt

Closed or not : False

Opening mode : r

The close ()

The close() method of a file object flushes any unwritten information and

closes the file object, after which no more writing can be done.

Syntax: fileObject.close();

Program:

Open a file

fo = open("file1.txt", “r")

print ("Name of the file: ", fo.name)

Close opened file

fo.close()

print ("Closed or not : ", fo.closed)

Output:

Name of the file: file1.txt

Closed or not : True

days.txt

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

168

Files

NOTES

Self-Instructional Material

11.3.3 Reading and writing a file

The read() Method

To read a file in Python, we must open the file in reading mode.

The code for opening myfile.txt for input:

>>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'r')

Syntax:fileObject.read(size);

There are various methods available for this purpose. We can use

the read(size) method to read in size number of data. If size parameter is not

specified, it reads and returns up to the end of the file.

Program:

Open a file

fo = open(“days.txt", "r")

str1= fo.read(7)

str2 = fo.read()

print ("String is : ", str1)

print ("String is : ", str2)

Close opened file

fo.close()

Output:

String is : Monday

String is : ‘Tuesday\nWednesday\nThursday\nFriday\nSaturday\nSunday\n’

The readline() Method

It reads a single line from the file; a newline character (\n) is left at the end of

the string, and is only omitted on the last line of the file if the file doesn’t end

in a newline.

• Syntax:fileObject.readline(line number);

Program:

Open a file

fo = open(“days.txt", "r")

print(fo.readline())

print(fo.readline(3))

Output:

Monday

Tuesday

The readlines() Method

It return every line in the file, properly separated

Syntax:fileObject.readlines();

Program:

Open a file

fo = open(“days.txt", "r")

fl =fo.readlines()

for x in fl:

print x

169

Files

NOTES

Self-Instructional Material

Output:

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

The write() Method

The write() method writes any string to an open file.

Data can be output to a text file using a file object. Python’s open

function, which expects a file pathname and a mode string as arguments,

opens a connection to the file on disk and returns a file object.

The mode string is 'r' forinput files and 'w' for output files. Thus, the

following code opens a file objecton a file named myfile.txt for output:

 >>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'w')

• The write() method does not add a newline character ('\n') to the end of

the string. String data are written (or output) to a file using the method

write with the file object. The write method expects a single string

argument. If you want the output text to end with a newline, you must

include the escape character \n in the string. The next statement writes

two lines of text to the file:

 >>>ƒf.write(“Firstƒline.\nSecondƒline.\n”)

• When all of the outputs are finished, the file should be closed using the

method close, as follows:

 >>>ƒf.close()

• Failure to close an output file can result in data being lost.

Program 1:

Open a file

fo = open("file1.txt", "w")

fo.write("Python is a great language.\nYeah its great!!\n")

Closeopened file

fo.close()

Output: file1.txt contains

Python is a great language.

Yeah its great!!

Program 2:

Fivehundred random integers between 1 and 500 are generated and written to

a text file named integers.txt. The newline character is the separator.

importƒrandom

fƒ=ƒopen(“integers.txt”,ƒ'w')

forƒcountƒinƒrange(500):

ƒƒƒƒnumberƒ=ƒrandom.randint(1,ƒ500)

ƒƒƒƒf.write(str(number)ƒ+ƒ“\n”)

f.close()

170

Files

NOTES

Self-Instructional Material

The writelines() Method

The method writelines() writes a sequence of strings to the file. The

sequence can be any iterable object producing strings, typically a list of

strings. There is no return value.

Syntax

Following is the syntax for writelines() method −

fileObject.writelines(sequence)

Parameters

 sequence − This is the Sequence of the strings.

Return Value

This method does not return any value.

Example

The following example shows the usage of writelines() method.

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

Open a file in witre mode

fo = open("foo.txt", "rw+")

print "Name of the file: ", fo.name

Assuming file has following 5 lines

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

Program :

seq = ["This is 6th line\n", "This is 7th line"]

Write sequence of lines at the end of the file.

fo.seek(0, 2)

line = fo.writelines(seq)

Now read complete file from beginning.

fo.seek(0,0)

for index in range(7):

line = fo.next()

print "Line No %d - %s" % (index, line)

Close opend file

fo.close()

Output:

Name of the file: foo.txt

Line No 0 - This is 1st line

Line No 1 - This is 2nd line

Line No 2 - This is 3rd line

Line No 3 - This is 4th line

171

Files

NOTES

Self-Instructional Material

Line No 4 - This is 5th line

Line No 5 - This is 6th line

Line No 6 - This is 7th line

11.3.4 The append()

The mode “a” is used to append a new text to the already existing file or the

new file

Program 1:

Open a file

fo = open("file1.txt", “a")

fo.write(“Python is interpreted language")

Close opend file

fo.close()

Output: file1.txt contains

Python is a great language.

Yeah its great!!

Python is interpreted language

Program 2:

fo = open("test10.txt", "w+")

fo.write("Python is a great language.\nYeah its great!!\n")

fo.close()

fo = open("test10.txt", "r")

print(fo.readline())

fo.close()

Output

Python is a great language

Program 3:

import sys

program_name = sys.argv[0]

arguments = sys.argv[1:]

count = len(arguments)

print(program_name)

print(sys.argv[2]

print(count)

Output: python filename.py 5 8

filename.py

8

2

11.3.5 File Positions

Tell() Method

The method tell() returns the current position of the file read/write pointer

within the file.

Syntax

172

Files

NOTES

Self-Instructional Material

Following is the syntax for tell() method

fileObject.tell()

Return Value

This method returns the current position of the file read/write pointer

within the file.

Example

The following example shows the usage of tell() method.

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

Program:
Open a file

fo = open("foo.txt", "rw+")

print "Name of the file: ", fo.name

Assuming file has following 5 lines

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

line = fo.readline()

print "Read Line: %s" % (line)

Get the current position of the file.

pos = fo.tell()

print "Current Position: %d" % (pos)

Close opend file

fo.close()

Output:

Name of the file: foo.txt

Read Line: Python is a great language.

Current Position: 28

Seek() Method

The method seek() sets the file's current position at the offset. The

whence argument is optional and defaults to 0, which means absolute file

positioning, other values are 1 which means seek relative to the current

position and 2 means seek relative to the file's end.

There is no return value. Note that if the file is opened for appending

using either 'a' or 'a+', any seek() operations will be undone at the next write.

If the file is only opened for writing in append mode using 'a', this

method is essentially a no-op, but it remains useful for files opened in

append mode with reading enabled (mode 'a+').

173

Files

NOTES

Self-Instructional Material

If the file is opened in text mode using 't', only offsets returned by

tell() are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

Syntax

Following is the syntax for seek() method −

fileObject.seek(offset[, whence])

Parameters

 offset − This is the position of the read/write pointer within the file.

 whence − This is optional and defaults to 0 which means absolute file

positioning, other values are 1 which means seek relative to the

current position and 2 means seek relative to the file's end.

Return Value

This method does not return any value.

Example

The following example shows the usage of seek() method.

Open a file

fo = open("foo.txt", "rw+")

print "Name of the file: ", fo.name

Program:
line = fo.readline()

print "Read Line: %s" % (line)

Again set the pointer to the beginning

fo.seek(0, 0)

line = fo.readline()

print "Read Line: %s" % (line)

Close opend file

fo.close()

Output:

Name of the file: foo.txt

Read Line: Python is a great language.

Read Line: Python is a great language.

11.4 ERRORS AND EXCEPTIONS

11.4.1 Errors

Errors or mistakes in a program are often referred to as bugs. They are almost

always the fault of the programmer. The process of finding and eliminating

errors is called debugging. Errors can be classified into three major groups:

1. Syntax errors

2. Runtime errors

3. Logical errors

1. Syntax errors

174

Files

NOTES

Self-Instructional Material

Syntax errors are mistakes in the use of the Python language, and are

analogous to spelling or grammar mistakes in a language like English: for

example, the sentence Would you some tea? does not make sense – it is

missing a verb.

Common Python syntax errors include:

 leaving out a keyword

 putting a keyword in the wrong place

 leaving out a symbol, such as a colon, comma or brackets

 misspelling a keyword

 incorrect indentation

 empty block

Some examples of syntax errors in Python:

• myfunction(x, y):

 return x + y

• else:

 print("Hello!")

• if mark >= 50

 print("You passed!")

• if arriving:

 print("Hi!")

• esle:

 print("Bye!")

• if flag:

print("Flag is set!")

2. Runtime errors

If a program is syntactically correct – that is, free of syntax errors – it will be

run by the Python interpreter. However, the program may exit unexpectedly

during execution if it encounters a runtime error – a problem which was not

detected when the program was parsed, but is only revealed when a particular

line is executed.

Examples of Python runtime errors:

 division by zero

 performing an operation on incompatible types

 using an identifier which has not been defined

 accessing a list element, dictionary value or object attribute which

doesn’t exist

 trying to access a file which doesn’t exist

3. Logical errors

Logical errors are the most difficult to fix. They occur when the program runs

without crashing, but produces an incorrect result. The error is caused by a

mistake in the program’s logic.

Some examples of mistakes which lead to logical errors:

 using the wrong variable name

 indenting a block to the wrong level

 using integer division instead of floating-point division

 getting operator precedence wrong

 making a mistake in a boolean expression

175

Files

NOTES

Self-Instructional Material

 off-by-one, and other numerical errors

11.4.2 Parts in an Error Message

The error message has two parts:

a. the type of error before the colon, and

b. speci_cs about the error after the colon

11.4.3 Built-In Exceptions

• Prohibited operations can elevate exceptions.

• All the built-in exceptions can be analyzed by means of local() built

in function as follows:

• Syntax:

>>>locals() [‘__builtins__’]

Sr.No. Exception Name & Description

1 Exception
Base class for all exceptions

2 StopIteration
Raised when the next() method of an iterator does not point to

any object.

3 SystemExit
Raised by the sys.exit() function.

4 StandardError
Base class for all built-in exceptions except StopIteration and

SystemExit.

5 ArithmeticError
Base class for all errors that occur for numeric calculation.

6 OverflowError
Raised when a calculation exceeds maximum limit for a numeric

type.

7 FloatingPointError
Raised when a floating point calculation fails.

8 ZeroDivisionError
Raised when division or modulo by zero takes place for all

numeric types.

9 AssertionError
Raised in case of failure of the Assert statement.

10 AttributeError
Raised in case of failure of attribute reference or assignment.

11 EOFError
Raised when there is no input from either the raw_input() or

input() function and the end of file is reached.

12 ImportError
Raised when an import statement fails.

13 KeyboardInterrupt
Raised when the user interrupts program execution, usually by

pressing Ctrl+c.

14 LookupError

176

Files

NOTES

Self-Instructional Material

Base class for all lookup errors.

15 IndexError
Raised when an index is not found in a sequence.

16 KeyError
Raised when the specified key is not found in the dictionary.

17 NameError
Raised when an identifier is not found in the local or global

namespace.

18 UnboundLocalError
Raised when trying to access a local variable in a function or

method but no value has been assigned to it.

19 EnvironmentError
Base class for all exceptions that occur outside the Python

environment.

20 IOError
Raised when an input/ output operation fails, such as the print

statement or the open() function when trying to open a file that

does not exist.

21 IOError
Raised for operating system-related errors.

22 SyntaxError
Raised when there is an error in Python syntax.

23 IndentationError
Raised when indentation is not specified properly.

24 SystemError
Raised when the interpreter finds an internal problem, but when

this error is encountered the Python interpreter does not exit.

25 SystemExit
Raised when Python interpreter is quit by using the sys.exit()

function. If not handled in the code, causes the interpreter to exit.

26 TypeError
Raised when an operation or function is attempted that is invalid

for the specified data type.

27 ValueError
Raised when the built-in function for a data type has the valid

type of arguments, but the arguments have invalid values

specified.

28 RuntimeError
Raised when a generated error does not fall into any category.

29 NotImplementedError
Raised when an abstract method that needs to be implemented in

an inherited class is not actually implemented.

 It is achievable to define the own exception in Python. We can handle

these built-in and user defined exceptions in Python using try, except

and finally statements.

177

Files

NOTES

Self-Instructional Material

11.4.4 Exceptions

• An exception is an error that happens during execution of a program.

When that error occurs, Python generate an exception that can be

handled, which avoids the program to crash.

• An exception is an event, which occurs during the execution of a

program that disrupts the normal flow of the program's instructions.

• An exception is a Python object that represents an error.

• Whenever a runtime error occurs, it creates an exception. The

program stops execution and

prints an error message. For example, dividing by zero creates an

exception:

For example

print 55/0

ZeroDivisionError: integer division or modulo

• When a Python script raises an exception, it must either handle the

exception immediately otherwise it terminates and quits.

• Program without handling an exception:

a = 10

b = 0

result = a/b

print (result)

• The above code cause zero division error that disrupts the normal

flow of the program's instructions

11.4.5 Error Messages that are Displayed for the Following

Exceptions

a. Accessing a non-existent list item

IndexError: list index out of range

b. Accessing a key that isn’t in the dictionary

KeyError: what

c. Trying to open a non-existent file

IOError: [Errno 2] No such file or directory: 'filename'

11.5 HANDLING AN EXCEPTION

Python using a key word try to organize a block of code that is expected to

produce an error and throw an exception.

 The defined except block is used to catch the exception thrown by the

try block and handle it.

 The try block can contain one or more statements that could produce

an exception. If anyone of the statement produces an exception,

subsequently the remaining statements in the block are omitted and

execution hops to except block which is located next to the try block.

 The except block can include more than one statement and if the

except argument matches with the type of the Exception object, then

the exception is fixed and statements in the except block will be

executed.

 Note: Each try block must be tracked by atleast one except statement.

178

Files

NOTES

Self-Instructional Material

Fig 1:Exception Handling

 While these exceptions happen, it causes the present process to stop

and passes it to the calling process until it is handled. If it is not

handled properly then the program will stop working.

 For example, if function student() calls the function branch() which

in turn calls the function curricular(). Consider that the function

curricular() is met with an exception. While the exception is not

handled in curricular(), then it passes to branch() and next to student(

). If not at all handled, an error message emits and the program will

come to an abrupt, unpredicted halt.

If you have some suspicious code that may raise an exception, you can

defend your program by placing the suspicious code in a try: block. After the

try: block, include an except: statement, followed by a block of code which

handles the problem efficiently as possible.

try:The suspicious code that may raise an exception can be placed in try

block.

except:The block of code which handles the problem as elegantly as possible

Syntax

Here is simple syntax of try....except...else blocks −

try

 You do your operations here;

exceptExceptionI:

 If there is ExceptionI, then execute this block.

exceptExceptionII:

 If there is ExceptionII, then execute this block.

else:

 If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax −

 A single try statement can have multiple except statements. This is

useful when the try block contains statements that may throw different

types of exceptions.

 You can also provide a generic except clause, which handles any

exception.

 After the except clause(s), you can include an else-clause. The code in

the else-block executes if the code in the try: block does not raise an

exception.

 The else-block is a good place for code that does not need the try:

block's protection.

179

Files

NOTES

Self-Instructional Material

Program with handling an exception:
a = 10

b = int(input(“Please enter the integer greater than:”))

try:
 result = a/b

 print (result)

except ZeroDivisionError:

 print (“Error, you have entered zero”)

Output 1:
Please enter the integer greater than 0: 5

 2.0

Output 1:
Please enter the integer greater than 0: 0

 Error, you have entered zero

In the above program, the string value is given as inputs then it produce a

ValueError exception.

Program 1:

This example opens a file, writes content in the, file and comes out because

there is no problem at all:

Output:

Program 2:

This example tries to open a file where you do not have write permission, so

it raises an exception –

Output:

180

Files

NOTES

Self-Instructional Material

11.5.1 except Clause with No Exceptions

 In Python it is possible to use an except statement with no exceptions

defined as follow:

 Syntax:
 try:

 You do your operations here;

 except:

 If there is any exception, then execute this block.

 else:

 If there is no exception then execute this block.

 This kind of a try-except statement catches all the exceptions that occur.

Using this kind of try-except statement is not considered a good

programming practice though, because it catches all exceptions but does not

make the programmer identify the root cause of the problem that may occur.

Program 3:

Output:

11.5.2 Handling Multiple Exceptions

To avoid the ValueError exception, multiple except clause can be used.

Program with multiple except clause:

a = 10

b = int(input(“Please enter the integer greater than:”))

try:

181

Files

NOTES

Self-Instructional Material

 result = a/b

 print (result)

exceptZeroDivisionError:

 print (“Error, you have entered zero”)

exceptValueError:

 print (“Error, Inappropriate value”)

Output:

 Please enter the integer greater than 0: a

 Error, Inappropriate value

11.5.3 The except clause with Multiple Exceptions

To handle the multiple exception with the help of tuple as follows.

Program with except clause have a tuple

a = 10

b = int(input(“Please enter the integer greater than:”))

try:

 result = a/b

 print (result)

except (ZeroDivisionError,ValueError):

 print (“Error, you have entered zero or inappropriate value”)

except:

 print (“Unknown Error”)

Output:

 Please enter the integer greater than 0: a

 Error, you have entered zero or inappropriate value

11.5.4 Handling an Exception by try/except/else clause

else clause is used to verify if no exception occurred in try.

Program with else clause have a tuple

a = 10

b = int(input(“Please enter the integer greater than:”))

try:

 result = a/b

except (ZeroDivisionError,ValueError):

 print (“Error, you have entered zero or inappropriate value”)

except:

 print (“Unknown Error”)

else:

 print (result)

Output:

 Please enter the integer greater than 0: a

 Error, you have entered zero or inappropriate value

182

Files

NOTES

Self-Instructional Material

11.5.5 Handling an Exception by try/except/finally clause

finallyclause is mainly used to close the resources. It must be executed even

though exception has been raised.

Program with finally clause have a tuple

a = 10

b = int(input(“Please enter the integer greater than:”))

result = None

try:

 result = a/b

 print (result)

except (ZeroDivisionError,ValueError):

 print (“Error, you have entered zero or inappropriate value”)

except:

 print (“Unknown Error”)

finally:

 print (result)

Output:

Please enter the integer greater than 0: 0

Error, you have entered zero or inappropriate value

None

11.5.6 Raising an Exceptions

The raise statement allows the programmer to force a specified

exception to occur.It is used to raise an exception when the program detects

an error. It takes two arguments: the exception type and specific information

about the error.

The general syntax for the raise statement is as follows.

Syntax

raise [Exception [, args [, traceback]]]

Here,

• Exception is the type of exception (for example, NameError) and

• args is a value for the exception argument. The argument is optional;

if not supplied, the exception argument is None.

• The final argument, traceback, is also optional (and rarely used in

practice), and if present, is the traceback object used for the exception.

Example:

>>> raise MemoryError
Traceback (most recent call last):

...

MemoryError

>>> raise MemoryError("This is an argument")

Traceback (most recent call last):

...

MemoryError: This is an argument

>>> try:

 a = int(input("Enter a positive integer value: "))

183

Files

NOTES

Self-Instructional Material

if a <= 0:

raiseValueError("This is not a positive number!!")

exceptValueError as ve:

print(ve)

Output:

If we enter a negative number:

Enter a positive integer: –5

This is not a positive number!!

• The sole argument to raise indicates the exception to be raised. This must

be either an exception instance or an exception class (a class that derives

from Exception).

• If an exception class is passed, it will be implicitly instantiated by calling

its constructor with no arguments:

raiseValueError

It is the shorthand for 'raise ValueError()'

A simpler form of the raise statement allows you to re-raise the exception is

given below:

>>>

>>> try:

... raiseNameError('HiThere')

... exceptNameError:

... print('An exception flew by!')

... raise

...
An exception flew by!

Traceback (most recent call last):

 File "<stdin>", line 2, in <module>

NameError: HiThere

Program 1:

184

Files

NOTES

Self-Instructional Material

Output:

11.5.7 User-Defined Exceptions

• Python also allows you to create your own exceptions by deriving

classes from the standard built-in exceptions.

• We can add user-defined exceptions by creating a new class in

Python. The trick here is to derive the custom exception class from

the base exception class. Most of the built-in exceptions use the same

technique to enforce their exceptions.

Program 1:

Creating a user defined exception class which throws an exception when

age is less than 18.

classMyErrorException(Exception):

def _str_(self):

 returnrepr(str(self.errCode) + “ ” + self.errMessage)

age = int(input(“Enter the age:”)

try:

if(age < 18):

raiseMyErrorException(age, “ is less than 18”)

exceptMyErrorException as exp:

print(exp)

print(“Unauthorized for voting”)

Ouput:
 Enter the age: 7

 7 is less than 18

 Unauthorized for voting

Explanation:

• MyErrorException class is a user defined exception which inherits

the properties from Exception class.

• It overrite the str() function to display the user defined error message.

• If the age value is given less than 18, then it raisean user defined

exception calledMyErrorException.

• Once MyErrorException is raised, it needs to be handled in except

clause to display the related error message.

185

Files

NOTES

Self-Instructional Material

11.6 FUNCTIONS

A function is a block of organized and reusable program code that

performs a single, specific and well-defined task. It is a group of statements

that perform a specific task.

Needs for function:

 If a program is large, it is difficult to understand the steps involved in it.

Hence, it is subdivided into a number of small program called

subprogram or modules.

 Each subprogram specifies one or more actions to be performed for the

larger program. Such subprograms are called as functions.

Advantage of function:

 Reduce the program development time and code.

 It ensures code readability.

 The function can be reused with or without modification when it is

needed.

Why use function?

 Maximizing code reuse and minimizing redundancy.

 Procedural decomposition.

Types of function:

There are two types of function. They are,

1. Built-in/ pre-defined function – function that are built into python.

2. User defined function – functions defined by user.

Built-in function:

The python interpreter has a number of functions that are always

available for use. These functions are called Built-in functions.

Built-in

function

Description

input() Read a line from input, convert it to a string.

print() Print objects to the stream.

len() Return the length of an object.

abs(n) Return absolute value of a number.

pow(n,d) Return n raised to the power d.

sqrt(n) Returns the square root of number.

int() Convert string, floating point into integer data type.

float() Convert string, integer into floating point data type.

str() Convert floating point, integer, list, tuple, and dictionary

into string data type.

list() Convert string, tuple, and dictionary into list data type.

tuples() Convert string and list into tuple data type.

 Table 1: Python built-in function

Program:

 n=int(input(“enter the number”))

186

Files

NOTES

Self-Instructional Material

 print(“the square root of a number: ”,sqrt(n))

Output:

 Enter the number: 4

 The square root of a number: 16

User defined function:

The functions defined by the users according to their requirements are

called user defined function. The user can modify the function according to

their requirements.

Function definition:

The functions are created by user in their programs using the def

keyword. The important points for creating a function as follows as,

 Functions blocks starts with the keyword def.

 The def keyword followed by function name and parentheses “() “.

 After the parentheses a colon (:) is placed.

 Parameter or arguments that the function accepts are placed within

parentheses.

 Return statement is optional

The function definition includes two parts:

1. Function header – it begins with keyword def and ends with colon (:)

2. Function body – it consisting of one or more python statements and it

is indented.

Syntax:

def functionName(variable1,variable2,….) :

 “””docstring”””

 block of statements

 return [expression]

Function call (function invocation):

A function is used within a program through function call. It invokes

the function. When function is invoked, then program control jumps to the

called function to execute the statements that are part of that function. Once

the function is executed, the program control is return back to calling

function.

Syntax:

functionName(variable1,variable2,….) or functionName()

Example: harmonic(n)

Return statements:

A function may or may not return a value. The return statement is

used for two things:

1. Return a value to the called function.

2. To end and exit a function and go back to the called function.

Syntax: return [expression]

187

Files

NOTES

Self-Instructional Material

The expression is optional. If the expression is presented, it is

evaluated and resultant value is return to the calling function. If no expression

is specified then the function will return none.

Program:

 def add(a,b):

 sum=a+b

 return sum

 a=5

b=4

c=add(a,b)

print(“sum:”,c)

Output:

 Sum: 9

Function with multiple return value:

The function returns more than one value at a time. These multiple

return value is considered as tuple.

Syntax: return value1, value2, value3, …value n

Program:

 def arithmetic(a,b):

 sum=a+b

 sub=a-b

 mul=a*b

 return sum,sub,mul

 a=5

b=4

c=arithmetic(a,b)

print(“tuple :”,c)

Output:

 tuple: (9, 1, 20)

11.7 PARAMETERS

The variables that are passed to the function in function definition are

called parameters.

Pass by value: (call by value)

Pass by reference: (call by reference)

Pass by Value:

The most common strategy is the call-by-value evaluation, sometimes also

called pass-by-value. In call-by-value, the argument expression is evaluated,

and the result of this evaluation is bound to the corresponding variable in the

function. So, if the expression is a variable, a local copy of its value will be

used, i.e. the variable in the caller's scope will be unchanged when the

function returns.

def change(x):

 x=x+1

 print('Inside change function x = ', x)

x=10

188

Files

NOTES

Self-Instructional Material

change(x)

print('Outside change function x = ', x)

Output:

Inside change function x = 11

Outside change function x = 10

Pass by Reference:

In call-by-reference evaluation, which is also known as pass-by-reference, a

function gets an implicit reference to the argument, rather than a copy of its

value. As a consequence, the function can modify the argument, i.e. the value

of the variable in the caller's scope can be changed.

def changeme(mylist):

print ("Values inside the function before change: ", mylist)

mylist[2]=50

print ("Values inside the function after change: ", mylist)

return

mylist = [10,20,30]

changeme(mylist)

print ("Values outside the function: ", mylist)

Output:

Values inside the function before change: [10, 20, 30]

Values inside the function after change: [10, 20, 50]

Values outside the function: [10, 20, 50]

11.8 ARGUMENTS

When the function with parameters is called, the values that are passed to the

calling function are called arguments.

Function with arguments

Function without arguments

Function arguments:

There are four types of formal arguments. They are:

1. Required arguments

2. Keyword arguments

3. Default arguments

4. Variable-length arguments

1. Required arguments:

The arguments are passed to a function in correct positional order.

The number of arguments in the function call should exactly match with the

number of arguments specified in the function definition.

Syntax:

def functionName(variable1,variable2,….) :

 block of statements

 return [expression]

Program 1:

def display(name, age, salary):

189

Files

NOTES

Self-Instructional Material

print(“name = ”, name)

print (“age = ", age)

print(“salary = ”,salary)

display(“abc”, 20, 3000)

Output:

Name = abc

Age = 20

Salary = 3000

Program 2:

def display(name, age, salary):

print(“name = ”, name)

print (“age = ", age)

print(“salary = ”,salary)

display(“abc”, 20)

Output:

Error: required argument value

 display(“abc”, 20)

 ^

2. Keyword arguments:

The values are assigned to the argument based on their position. By

using keyword argument, the order (position) of the argument can be

changed. The values are not assigned to arguments according to their position

but based on their name (keyword).

Syntax:

functionName(variable1 = value1, variable2 = value2)

Program:

def display(name, age, salary):

print(“name = ”, name)

print (“age = ", age)

print(“salary = ”,salary)

display(age = 20, salary = 3000, name = “abc”)

Output:

Name = abc

Age = 20

Salary = 3000

3. Default arguments:

The default value is assigned to the function argument. The default

value to an argument is provided by using the assignment operator (=).

Syntax:

def functionName(variable1,variable2 = value) :

 block of statements

 return [expression]

190

Files

NOTES

Self-Instructional Material

Program:

def display(name, age, salary = 4000):

print(“name = ”, name)

print (“age = ", age)

print(“salary = ”,salary)

display(“abc”, 20)

display(“abc”, 20, 5000)

Output:

Name = abc

Age = 20

Salary = 4000

Name = abc

Age = 20

Salary = 5000

4. Variable-length arguments: (arbitrary arguments)

 In some situation, it is not known in advanced how many arguments

will be passed to a function. In such case, python allows programmers to

make function calls with arbitrary (any) number of arguments by using

asterisk (*) before the parameter name.

Syntax:

def functionName(* variable) :

 block of statements

 return [expression]

Program:

def display(* var):

print(“list = ”, var)

display(“abc”, 20, 3000)

Output:

list = [abc, 20, 4000]

Function composition:

Function composition is a way of combining function such that the

result of each function is passed as the argument of the next function. It is

ability to call function from within another function.

Example:

def f():

 return g()

def g():

 print(“inner function”)

 f()

191

Files

NOTES

Self-Instructional Material

11.9 FRUITFUL FUNCTION: (FUNCTION RETURNING

VALUES)

The function which returns values is called the fruitful function. The

statement return [expression] exits in a function pass back an expression to

the called function. A return statement with no arguments is return None

value.

Program:

def sum(a, b):

total = a + b

print (“Inside the function : ", total)

return total

c = sum(10, 20)

print (“outside the function : ", c)

Output:

Inside the function: 30

 Outside the function: 30

Void function:

The function without return statement is called the void function.

Program:

def sum(a, b):

total = a+b

print (“Inside the function : ", total)

sum(10, 20)

Output:

Inside the function: 30

Flow of execution:

Before using the function, it is important to define it. To define a

function, we must know the sequence in which the statement of function

should run. This order of statement execution is called as flow of execution.

How function works:

 Once a function is called, it takes some data from the calling function

and returns back some value to the called function.

 Whenever function is called, control passes to the called function and

working of the calling function is temporarily stopped, when the

execution of the called function is completed then control returns back

to the calling function and execute the next statements.

 The function operates on formal and actual arguments and sends back

the result to the calling function using return statement.

192

Files

NOTES

Self-Instructional Material

Fig: calling a function

11.10 VARIABLE SCOPE AND LIFETIME:

 Scope of the variable: part of the program in which a variable is

accessible is called its scope.

 Lifetime of the variable: duration for which the variable exists is

called its lifetime.

Local and global variable:

 Global variable: variables are defined in main body of the program

file. They are access throughout the program file. It is accessible to all

function.

 Local variable: variable is defined within a function is local variable

to that function. A local variable can be accessed only within (inside)

the function. It is not accessible to other function.

Program:

num=10 #num = global variable

print(“the global variable num=”, num)

def func(num2): #num2 = local variable

 print(“the local variable num2=”, num2))

 num3=30 #num3 = local variable

 print(“the local variable num3=”, num3))

func(20)

print(“Accessing global variable num=”, num)

Output:

 the global variable num=10

 the local variable num2=20

the local variable num3=30

Accessing global variable num=10

Using global variable:

The variable is defined inside a function as global by using keyword

global.

193

Files

NOTES

Self-Instructional Material

Program:

num=10 #num = global variable

print(“the global variable num=”, num)

def func(num2): #num2 = local variable

 print(“the local variable num2=”, num2))

 global num3=30 #num3 = global variable

 print(“the global variable num3=”, num3))

func(20)

print(“Accessing global variable num=”, num)

print(“Accessing global variable num3=”, num3)

Output:

 the global variable num=10

 the local variable num2=20

the global variable num3=30

Accessing global variable num=10

Accessing global variable num3=10

11.11 FUNCTION RECURSION:

When a function call itself is knows as recursion. Recursion works like loop

but sometimes it makes more sense to use recursion than loop. You can

convert any loop to recursion.This condition is known as base condition. A

base condition is must in every recursive programs otherwise it will continue

to execute forever like an infinite loop.

Overview of how recursive function works

1. Recursive function is called by some external code.

2. If the base condition is met then the program do something

meaningful and exits.

3. Otherwise, function does some required processing and then call itself

to continue recursion.

Here is an example of recursive function used to calculate factorial.

def fact(n):

 if n == 0:

 return 1

 else:

 return n * fact(n-1)

print(fact(0))

print(fact(5))

Expected Output:

1

120

Lambda function: (anonymous function)

In lambda function, the function is not declared by using the keyword

def. Rather than the function created by using the lambda keyword.

Syntax:

Lambda arguments : expression

194

Files

NOTES

Self-Instructional Material

Program:

a=10

sum = lambda a : a + 5

print(“sum = ”,sum)

Output:
Sum = 15

11.12 MODULES AND PACKAGES

11.12.1 Modules

• Modules are files containing Python definitions and statements (ex.

name.py).A module’s definitions can be imported into other modules

by using “import name”.

• The module’s name is available as a global variable value. To access

a module’s functions, type “name. function()”

• Modules can contain executable statements along with function

definitions. Each module has its own private symbol table used as the

global symbol table by all functions in the module. Modules can

import other modules.

• Each module is imported once per interpreter session

– reload(name)

• Can import names from a module into the importing module’s symbol

table

– from mod import m1, m2 (or *)

– m1()

• python name.py <arguments>

– Runs code as if it was imported

– Setting _name_ == “_main_” the file can be used as a

script and an importable module

11.12.1.1 The import Statement

• The import Statement can use any Python source file as a module by

executing an import statement in some other Python source file.

• When the interpreter encounters an import statement, it imports the

module if the module is present in the search path.

• A search path is a list of directories that the interpreter searches before

importing a module. A module is loaded only once, regardless of the

number of times it is imported.

• This prevents the module execution from happening repeatedly, if

multiple imports occur.

• The import has the following syntax-

import module1[, module2[,... moduleN]

• The from...import Statement imports specific attributes from a

module into the current namespace. The from...import has the

following syntax-

frommodname import name1[, name2[, ... nameN]]

For example, to import the function fibonacci from the module fib, use the

following statement-

195

Files

NOTES

Self-Instructional Material

#!/usr/bin/python3

Fibonacci numbers module

def fib(n): # return Fibonacci series up to n

result = []

a, b = 0, 1

while b < n:

result.append(b)

a, b = b, a+b

return result

>>>from fib import fib

>>>fib(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This statement does not import the entire module fib into the current

namespace; it just introduces the item fibonacci from the module fib into the

global symbol table of the importing module.

• The from...import * Statement provides an easy way to import all the

items from a module into the current namespace; however, this

statement should be used sparingly.

• It is also possible to import all names from a module into the current

namespace by using the following import statement.

• The from...import * Statement has the following syntax- from

modname import *

>>>from fib import *

>>>fib1(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>>fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>>

Here the statement from fib import * imports all functions defined inside the

module fib.py

11.12.1.2 Standard Modules

Python comes with a library of standard modules described in the Python

Library Reference. Some are built into interpreter. For example

>>> import sys

 >>> sys.s1

 ‘>>> ‘

 >>> sys.s1 = ‘c> ‘

 c> print ‘Hello’

 Hello

 c>

sys.path determines the interpreters’s search path for modules, with the

default path taken from PYTHONPATH.It can be modified with append()

(ex. Sys.path.append(‘SOMEPATH’)

dir() Function

• Used to find the names a module defines and returns a sorted list of

strings

– >>> import mod

196

Files

NOTES

Self-Instructional Material

 >>>dir(mod)

 [‘_name_’, ‘m1’, ‘m2’]

• Without arguments, it lists the names currently defined (variables,

modules, functions, etc)

• Does not list names of built-in functions and variables

Use _bulltin_to view all built-in functions and varia

11.13 CLASSES AND OOP

Python is an object oriented programming language. Unlike procedure

oriented programming, where the main emphasis is on functions, object

oriented programming stress on objects.Object is simply a collection of data

(variables) and methods (functions) that act on those data. And, class is a

blueprint for the object.We can think of class as a sketch (prototype) of a

house. It contains all the details about the floors, doors, windows etc. Based

on these descriptions we build the house. House is the object.

As, many houses can be made from a description, we can create many objects

from a class. An object is also called an instance of a class and the process of

creating this object is called instantiation.

11.13.1 Defining a Class in Python

Like function definitions begin with the keyword def, in Python, we define a

class using the keyword class. The first string is called docstring and has a

brief description about the class. Although not mandatory, this is

recommended. Here is a simple class definition.

class MyNewClass:

 '''This is a docstring. I have created a new class'''

 pass

A class creates a new local namespace where all its attributes are defined.

Attributes may be data or functions. There are also special attributes in it that

begins with double underscores For example, doc gives us the do string of

that class. As soon as we define a class, a new class object is created with the

same name. This class object allows us to access the different attributes as

well as to instantiate new objects of that class.

11.14 EXECUTION ENVIRONMENT

The interpreter has a number of options that control its runtime behavior and

environment. Options are given to the interpre ter on the command line

as follows:

python [options] [-c cmd | filename | -] [args]

Here’s a list of the most common command-line options:

197

Files

NOTES

Self-Instructional Material

S.No. Option & Description

1 -d
It provides debug output.

2 -O
It generates optimized bytecode (resulting in .pyo files).

3 -S
Do not run import site to look for Python paths on startup.

4 -v
verbose output (detailed trace on import statements).

5 -X
disable class-based built-in exceptions (just use strings); obsolete

starting with version 1.6.

6 -c cmd
run Python script sent in as cmd string

7 file
run Python script from given file

Check your Progress

1. What are Files?

2. What are the types of file?

3. What are Errors?

4. What is User-Defined Exceptions?

5. What is Function Invocation?

11.15 ANSWERS TO CHECK YOUR PROGRESS

1. File is a named location on disk to store related information. It is used

to permanently store data in a non-volatile memory

2. In Python, a file is categorized as:

 Text file

 Binary file

3. Errors or mistakes in a program are often referred to as bugs. They are

almost always the fault of the programmer. The process of finding and

198

Files

NOTES

Self-Instructional Material

eliminating errors is called debugging. Errors can be classified into

three major groups:

 Syntax errors.

 Runtime errors.

 Logical errors.

4. Python also allows you to create your own exceptions by deriving

classes from the standard built-in exceptions. We can add user-

defined exceptions by creating a new class in Python. The trick here

is to derive the custom exception class from the base exception class.

Most of the built-in exceptions use the same technique to enforce

their exceptions

5. A function is used within a program through function call. It invokes

the function. When function is invoked, then program control jumps

to the called function to execute the statements that are part of that

function. Once the function is executed, the program control is return

back to calling function.

11.16 SUMMARY
 Text files are structured as a sequence of lines, where each line

includes a sequence of characters.

 File is a named location on disk to store related information. It is used

to permanently store data in a non-volatile memory (e.g. hard disk).

 Errors can be classified into three major groups: Syntax errors,

Runtime errors and Logical errors

 The error message has two parts: type of error before the colon, and

speci_cs about the error after the colon

 Python using a key word try to organize a block of code that is

expected to produce an error and throw an exception.

11.17 KEYWORDS

Seek (): It sets the file's current position at the offset. The whence argument

is optional and defaults to 0, which means absolute file positioning, other

values are 1 which means seek relative to the current position and 2 means

seek relative to the file's end.

Errors: Errors or mistakes in a program are often referred to as bugs. They

are almost always the fault of the programmer.

ValueError: It is raised when the built-in function for a data type has the

valid type of arguments, but the arguments have invalid values specified.

Exception: An exception is an error that happens during execution of a

program. When that error occurs, Python generate an exception that can be

handled, which avoids the program to crash.

199

Files

NOTES

Self-Instructional Material

11.18 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. What are parameters?

2. What are arguments?

3. What are fruitful functions?

4. Explain about Local and Global variable?

5. Explain about Function Recursion?

Long Answer questions:

1. Explain about Modules and Packages?

2. Explain about Arguments?

Explain about Functions?

11.19 FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

200

Perl

NOTES

Self-Instructional Material

BLOCK – V

OPEN SOURCE PROGRAMMING

LANGUAGE-PERL

UNIT- 12 PERL

Structure

12.0 Introduction

12.1 Objective

12.2 Perl Backgrounder

12.3 Perl Overview

12.4 Parsing rules

12.5 Variables

12.5.1 Creating Variables

12.5.2 Scalar Variables

12.5.3 Array Variables

12.5.4 Hash Variables

12.5.5 Variable Context

12.6 Datatypes

12.7 Answers to Check Your Progress

12.8 Summary

12.9 Keywords

12.10 Self Assessment Questions and Exercises

12.11 Further Readings

12.0 INTRODUCTION

Open source programming languages are freely available to the user one such

software is Perl Programming language which consists of many packages for

the web development creating a platform for all users to work with it.

12.1 OBJECTIVE

This unit helps the user to learn and understand the Perl

 Parsing Rules

 Variables and Datatypes

201

Perl

NOTES

Self-Instructional Material

12.2 PERL BACKGROUNDER

Perl is a general-purpose programming language originally developed for text

manipulation and now used for a wide range of tasks including system

administration, web development, network programming, GUI development,

and more. Perl is a stable, cross platform programming language. Though

Perl is not officially an acronym but few people used it as Practical

Extraction and Report Language. It is used for mission critical projects in the

public and private sectors. Perl is Open Source software, licensed under its

Artistic License, or the GNU General Public License (GPL).Perl was created

by Larry Wall. Perl 1.0 was released to usenet's alt.comp.s ources in 1987.At

the time of writing this tutorial, the latest version of Perl was 5.16.2.Perl is

listed in the Oxford English Dictionary. PC Magazine announced Perl as the

finalist for its 1998 Technical Excellence Award in the Development Tool

category.

12.3 PERL OVERVIEW

 Perl takes the best features from other languages, such as C, awk,

sed, sh, and BASIC, among others.

 Perls database integration interface DBI supports third-party

databases including Oracle, Sybase, Postgres, MySQL and others.

 Perl works with HTML, XML, and other mark-up languages.

 Perl supports Unicode.

 Perl is Y2K compliant.

 Perl supports both procedural and object-oriented programming.

 Perl interfaces with external C/C++ libraries through XS or SWIG.

 Perl is extensible. There are over 20,000 third party modules

available from the Comprehensive Perl Archive Network (CPAN).

 The Perl interpreter can be embedded into other system

 Perl used to be the most popular web programming language due to

its text manipulation capabilities and rapid development cycle.

 Perl is widely known as "the duct-tape of the Internet".

 Perl can handle encrypted Web data, including e-commerce

transactions.

 Perl can be embedded into web servers to speed up processing by as

much as 2000%.

 Perl's mod_perl allows the Apache web server to embed a Perl

interpreter.

 Perl's DBI package makes web-database integration easy.

Perl is an interpreted language, which means that your code can be run as is,

without a compilation stage that creates a non-portable executable program.

Traditional compilers convert programs into machine language. When you

run a Perl program, it's first compiled into a byte code, which is then

https://cpan.perl.org/

202

Perl

NOTES

Self-Instructional Material

converted (as the program runs) into machine instructions. So it is not quite

the same as shells, or Tcl, which are strictly interpreted without an

intermediate representation. It is also not like most versions of C or C++,

which are compiled directly into a machine dependent format. It is

somewhere in between, along with Python and awk and Emacs .elc files.

12.4 PARSING RULES

The Swedish Chef lex grammar, by John Hagerman, is a great example of a

simple text filter. It's also a lot of fun, having amused many computer science

and engineering students on the eve of their finals. I will show an example of

porting the chef’s grammar to Perl using the Parse::RecDescent module (not

the ideal choice for this task -- the Parse::Lex module would be a better one).

This section is intended only as an introduction to the rules of building a

Parse::RecDescent syntax and will include actions, remembering the state,

rejecting productions, and lexing text. Remember to try the chef.pl script

yourself -- you may just find yourself addicted.

The chef.pl script is an almost exact copy of the chef.l lex grammar. The

$niw variable is set to 0 at startup, because many rules test it to see if they

should be accepted or rejected. $niw stands for "not in word", and it is set to

1 when the parser is inside a word. The directive to Parse::RecDescent will

reject a rule if the variable named in the directive is non-zero. So keep in

mind that $niw = 0 means that you are not inside a word.

The skip variable was set to '' (empty string), so all input, including spaces,

goes to the token directive. Also, the chef rule ends on \z, which is the end of

the string. Usually, \Z is used, but that can also match a newline in Perl, and

those may also be in the input.

The chef rule: The grammar begins with the chef rule. The chef rule matches

a number of tokens, up to the \z end of string. Those two elements of the chef

rule are called "productions." Any rule must be made up of productions. An

action can be part of a production; it is marked by braces {} and contains Perl

code. It doesn't match anything -- it is simply executed.

The token rule: The token rule can match any of a number or sequences,

somewhat arbitrarily, which I named to match the chef.l grammar. I'll explain

a few examples, so that the grammar correspondence is clear.

The basic grammar definitions of a word/non-word character:

chef.pl: WC: /[A-Za-z']/

chef.pl: NW: /[^A-Za-z']/

chef.l: WC [A-Za-z']

chef.l: NW [^A-Za-z']

The an rule: The simplest rules do not depend on anything. The an rule is a

good example: Whenever it sees 'an', it prints 'un'. Also, it sets $niw to 1

(remember, that means you are inside a word).

203

Perl

NOTES

Self-Instructional Material

chef.pl: an: /an/ { $niw = 1; print 'un' }

chef.l: "an" { BEGIN INW; printf("un"); }

The ax rule: The next more complex rule is the ax rule. It says, if an 'a'

shows up, and is followed by a word character WC, print 'e'. The ...WC

production syntax means that a word character must follow the a, but will not

be consumed in the match. Thus, 'aan' produces 'eun' with an and ax rules.

The rule sets $niw to 1 (inside a word).

chef.pl: ax: /a/ ...WC { $niw = 1; print "e" }

chef.l: "a"/{WC} { BEGIN INW; printf("e"); }

The en rule: The en rule works exactly like the ax rule, but with a NW (non-

word) production anticipated to follow. This means that the 'en' must be at the

end of a word.

chef.pl: en: /en/ ...NW { $niw = 1; print "ee" }

chef.l: "en"/{NW} { BEGIN INW; printf("ee"); }

The ew rule: The ew rule succeeds only if you are inside a word. That's why

you reject it if $niw is 0.

chef.pl: ew: /ew/ { $niw = 1; print "oo" }

chef.l: "ew" { BEGIN INW; printf("oo"); }

The i rule: The i rule will succeeds only if you are inside a word, and have

not seen another i yet. It augments $i_seen to 1, and $i_seen is only set back

to 0 if a non-word character or a newline are seen.

chef.pl: i: /i/ { $niw=1;$i_seen=1; print "ee" }

chef.l: "i" { BEGIN INW; printf(i_seen++ ? "i" : "ee"); }

The end of sentence rule: The end of sentence markers [.!?] in any quantity,

followed by space, will be printed, followed by the famous (or infamous, take

your pick) "Bork Bork Bork!" message. The actual behavior deviates slightly

from the original chef filter, only because I like it better that way (one can

never have enough Bork messages). The $item[1] syntax means that the

spaces won't be matched, since they are known as $item[2] to

Parse::RecDescent.

chef.pl: end_of_sentence: /[.?!]+/ /\s+/

 { $niw = 0; $i_seen = 0;

 print $item[1] . "\nBork Bork Bork!\n" }

chef.l: [.!?]$

 { BEGIN NIW;

 i_seen = 0;

204

Perl

NOTES

Self-Instructional Material

 printf("%c\nBork Bork Bork!",

 yytext[0]);

 }

The extend-grammar process rule: The process rule can consist of a query

or a definition. Unless it finds one or the other, it triggers a message in the

main loop. The extend-grammar query rules: The query rule consists of a do

you know production, followed by a name or a proper name. For a name, the

action is to print a message that it is unknown. For a proper name (as defined

by the proper name rule), the action is to print out a message that it is known.

Two rules of the same name are equivalent to one rule with two alternative

productions, the extend-grammar definition rule: The heart of this extensible

grammar is the definition rule. If a name is followed by 'exists', then the

action will extend the parser with a new rule for proper name. You can

modify the very grammar you are executing, while it's running.

12.5 VARIABLES

Variables are the reserved memory locations to store values. This means that

when you create a variable you reserve some space in memory. Based on the

data type of a variable, the interpreter allocates memory and decides what can

be stored in the reserved memory. Therefore, by assigning different data

types to variables, you can store integers, decimals, or strings in these

variables. We have learnt that Perl has the following three basic data types −

 Scalars

 Arrays

 Hashes

Accordingly, we are going to use three types of variables in Perl. A scalar

variable will precede by a dollar sign ($) and it can store either a number, a

string, or a reference. An array variable will precede by sign @ and it will

store ordered lists of scalars. Finaly, the Hash variable will precede by sign %

and will be used to store sets of key/value pairs.Perl maintains every variable

type in a separate namespace. So you can, without fear of conflict, use the

same name for a scalar variable, an array, or a hash. This means that $foo and

@foo are two different variables.

12.5.1 Creating Variables

Perl variables do not have to be explicitly declared to reserve memory space.

The declaration happens automatically when you assign a value to a variable.

The equal sign (=) is used to assign values to variables. Keep a note that this

is mandatory to declare a variable before we use it if we use strict statement

in our program. The operand to the left of the = operator is the name of the

variable, and the operand to the right of the = operator is the value stored in

the variable. For example

$age = 25; # An integer assignment

$name = "John Paul"; # A string

205

Perl

NOTES

Self-Instructional Material

$salary = 1445.50; # A floating point

Here 25, "John Paul" and 1445.50 are the values assigned to $age, $name and

$salary variables, respectively. Shortly we will see how we can assign values

to arrays and hashes.

12.5.2 Scalar Variables

A scalar is a single unit of data. That data might be an integer number,

floating point, a character, a string, a paragraph, or an entire web page.

Simply saying it could be anything, but only a single thing. Here is a simple

example of using scalar variables

 Live Demo

#!/usr/bin/perl

$age = 25; # An integer assignment

$name = "John Paul"; # A string

$salary = 1445.50; # A floating point

print "Age = $age\n";

print "Name = $name\n";

print "Salary = $salary\n";

This will produce the following result −

Age = 25

Name = John Paul

Salary = 1445.5

12.5.3 Array Variables

An array is a variable that stores an ordered list of scalar values. Array

variables are preceded by an "at" (@) sign. To refer to a single element of an

array, you will use the dollar sign ($) with the variable name followed by the

index of the element in square brackets. Here is a simple example of using

array variables

 Live Demo

#!/usr/bin/perl

@ages = (25, 30, 40);

@names = ("John Paul", "Lisa", "Kumar");

print "\$ages[0] = $ages[0]\n";

print "\$ages[1] = $ages[1]\n";

print "\$ages[2] = $ages[2]\n";

print "\$names[0] = $names[0]\n";

print "\$names[1] = $names[1]\n";

206

Perl

NOTES

Self-Instructional Material

print "\$names[2] = $names[2]\n";

Here we used escape sign (\) before the $ sign just to print it. Other Perl will

understand it as a variable and will print its value. When executed, this will

produce the following result −

$ages[0] = 25

$ages[1] = 30

$ages[2] = 40

$names[0] = John Paul

$names[1] = Lisa

$names[2] = Kumar

12.5.4 Hash Variables

A hash is a set of key/value pairs. Hash variables are preceded by a percent

(%) sign. To refer to a single element of a hash, you will use the hash variable

name followed by the "key" associated with the value in curly brackets. Here

is a simple example of using hash variables

 Live Demo

#!/usr/bin/perl

%data = ('John Paul', 45, 'Lisa', 30, 'Kumar', 40);

print "\$data{'John Paul'} = $data{'John Paul'}\n";

print "\$data{'Lisa'} = $data{'Lisa'}\n";

print "\$data{'Kumar'} = $data{'Kumar'}\n";

This will produce the following result −

$data{'John Paul'} = 45

$data{'Lisa'} = 30

$data{'Kumar'} = 40

12.5.5 Variable Context

Perl treats same variable differently based on Context, i.e., situation where a

variable is being used. Let's check the following example

 Live Demo

#!/usr/bin/perl

@names = ('John Paul', 'Lisa', 'Kumar');

@copy = @names;

$size = @names;

print "Given names are : @copy\n";

print "Number of names are : $size\n";

207

Perl

NOTES

Self-Instructional Material

This will produce the following result −

Given names are : John Paul Lisa Kumar

Number of names are : 3

Here @names is an array, which has been used in two different contexts. First

we copied it into any other array, i.e., list, so it returned all the elements

assuming that context is list context.

12.6 DATATYPES

Perl is a loosely typed language and there is no need to specify a type for

your data while using in your program. The Perl interpreter will choose the

type based on the context of the data itself.

Perl has three basic data types: scalars, arrays of scalars, and hashes of

scalars, also known as associative arrays. Here is a little detail about these

data types.

Scalars are simple variables. They are preceded by a dollar sign ($). A

scalar is either a number, a string, or a reference. A reference is actually an

address of a variable, which we will see in the upcoming chapters.

Arrays are ordered lists of scalars that you access with a numeric index,

which starts with 0. They are preceded by an "at" sign (@).

Hashes-Hashes are unordered sets of key/value pairs that you access using

the keys as subscripts. They are preceded by a percent sign (%).

Numeric Literals-Perl stores all the numbers internally as either signed

integers or double-precision floating-point values. Numeric literals are

specified in any of the following floating-point or integer formats

String Literals-Strings are sequences of characters. They are usually

alphanumeric values delimited by either single (') or double (") quotes. They

work much like UNIX shell quotes where you can use single quoted strings

and double quoted strings.

Double-quoted string literals allow variable interpolation, and single-quoted

strings are not. There are certain characters when they are proceeded by a

back slash, have special meaning and they are used to represent like newline

(\n) or tab (\t).You can embed newlines or any of the following Escape

sequences directly in your double quoted strings

Escape

sequence

Meaning

\\ Backslash

\' Single quote

\" Double quote

\a Alert or bell

\b Backspace

\f Form feed

208

Perl

NOTES

Self-Instructional Material

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\0nn Creates Octal formatted numbers

\xnn Creates Hexideciamal formatted numbers

\cX Controls characters, x may be any character

\u Forces next character to uppercase

\l Forces next character to lowercase

\U Forces all following characters to uppercase

\L Forces all following characters to lowercase

\Q Backslash all following non-alphanumeric

characters

\E End \U, \L, or \Q

Example

Let's see again how strings behave with single quotation and double

quotation. Here we will use string escapes mentioned in the above table and

will make use of the scalar variable to assign string values.

 Live Demo

#!/usr/bin/perl

This is case of interpolation.

$str = "Welcome to \ntutorialspoint.com!";

print "$str\n";

This is case of non-interpolation.

$str = 'Welcome to \ntutorialspoint.com!';

print "$str\n";

Only W will become upper case.

$str = "\uwelcome to tutorialspoint.com!";

print "$str\n";

Whole line will become capital.

$str = "\UWelcome to tutorialspoint.com!";

209

Perl

NOTES

Self-Instructional Material

print "$str\n";

A portion of line will become capital.

$str = "Welcome to \Ututorialspoint\E.com!";

print "$str\n";

Backsalash non alpha-numeric including spaces.

$str = "\QWelcome to tutorialspoint's family";

print "$str\n";

This will produce the following result −

Welcome to

tutorialspoint.com!

Welcome to \ntutorialspoint.com!

Welcome to tutorialspoint.com!

WELCOME TO TUTORIALSPOINT.COM!

Welcome to TUTORIALSPOINT.com!

Welcome\ to\ tutorialspoint\'s\ famil

Check your Progress

1. What is Perl?

2. What are Productions in Perl?

3. What is the Token rule?

4. What are three basic data types in Perl?

5. What are Scalar Variables?

12.7 ANSWERS TO CHECK YOUR PROGRESS

1. Perl is a general-purpose programming language originally developed

for text manipulation and now used for a wide range of tasks

including system administration, web development, network

programming, GUI development, and more.

2. The grammar begins with the chef rule. The chef rule matches a

number of tokens, up to the \z end of string. Those two elements of

the chef rule are called "productions." Any rule must be made up of

productions. An action can be part of a production; it is marked by

braces {} and contains Perl code. It doesn't match anything -- it is

simply executed.

3. The token rule can match any of a number or sequences, somewhat

arbitrarily, which I named to match the chef.l grammar.

210

Perl

NOTES

Self-Instructional Material

4. Perl has the following three basic data types:

 Scalars

 Arrays

 Hashes

5. A scalar is a single unit of data. That data might be an integer number,

floating point, a character, a string, a paragraph, or an entire web

page. Simply saying it could be anything, but only a single thing.

12.8 SUMMARY
 Perl has three basic data types: scalars, arrays of scalars, and hashes

of scalars, also known as associative arrays.

 An array is a variable that stores an ordered list of scalar values.

 A scalar is a single unit of data. That data might be an integer

number, floating point, a character, a string, a paragraph, or an entire

web page.

 Perl variables do not have to be explicitly declared to reserve

memory space.

12.9 KEYWORDS

The extend-grammar process rule: The process rule can consist of a query

or a definition.

Hashes-Hashes are unordered sets of key/value pairs that you access using

the keys as subscripts. They are preceded by a percent sign (%).

Numeric Literals-Perl stores all the numbers internally as either signed

integers or double-precision floating-point values. Numeric literals are

specified in any of the following floating-point or integer formats

Until loop: Repeats a statement or group of statements until a given condition

becomes true. It tests the condition before executing the loop body.

12.10 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. What are Array Variables?

2. What are Hash Variables?

3. What is Variable context?

4. What are Datatypes?

5. What are String Literals?

Long Answer questions:

1. Explain about datatypes and its basic data types?

2. Explain about Variables and its basic datatypes?

3. Explain about Parsing Parsing Rules?

211

Perl

NOTES

Self-Instructional Material

12.11. FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

212

Control Structures

NOTES

Self-Instructional Material

UNIT- 13 CONTROL STRUCTURES

Structure

13.0 Introduction

13.1 Objective

13.2 Control Structures

13.2.1 Decision Making Statements in Perl

13.3 Subroutines

13.3.1 Define and Call a Subroutine

13.3.2 Passing Arguments to a Subroutine

13.3.3 Passing Lists to Subroutines

13.3.4 Passing Hashes to Subroutines

13.3.5 Returning Value from a Subroutine

13.4 Answers to Check Your Progress

13.5 Summary

13.6 Keywords

13.7 Self Assessment Questions and Exercises

13.8 Further Readings

13.0 INTRODUCTION

The control structures are important statements in programming languages.

This unit explains the basic control structures and subroutines of Perl

Programming Languages. The different control statements and their syntax

are discussed

13.1 OBJECTIVE

This unit helps the user to start their Perl programming by understanding

 Control Structures

 Subroutines

13.2 CONTROL STRUCTURES

Perl conditional statements helps in the decision making, which require that

the programmer specifies one or more conditions to be evaluated or tested by

the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be

executed if the condition is determined to be false. Following is the general

from of a typical decision making structure found in most of the

programming languages

213

Control Structures

NOTES

Self-Instructional Material

13.2.1 Decision making statements in Perl

The number 0, the strings '0' and "" , the empty list () , and undef are all false

in a boolean context and all other values are true. Negation of a true value by!

Or not returns a special false value. Perl programming language provides the

following types of conditional statements.

1. if statement-An if statement consists of a boolean expression followed by

one or more statements.

2.if...else statement- An if statement can be followed by an optional else

statement.

3.if...elsif...else statement -An if statement can be followed by an optional

elsif statement and then by an optional else

statement.

4.unless statement-An unless statement consists of a boolean expression

followed by one or more statements.

5. unless...else statement-An unless statement can be followed by an

optional else statement.

6. unless...elsif..else statement-An unless statement can be followed by an

optional elsif statement and then by an

optional else statement.

7. switch statement-With the latest versions of Perl, you can make use of the

switch statement. which allows a simple way of

comparing a variable value against various conditions.

8. The ? : Operator-Let's check the conditional operator ? :which can be

used to replace if...else statements. It has the following general form

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement

of the colon.

The value of a ? Expression is determined like this: Exp1 is evaluated. If it is

true, then Exp2 is evaluated and becomes the value of the entire ? expression.

If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the

expression. Below is a simple example making use of this operator?

214

Control Structures

NOTES

Self-Instructional Material

Figure 13.1 Control structure

Live Demo

#!/usr/local/bin/perl

 $name = "Ali";

$age = 10;

$status = ($age > 60)? "A senior citizen" : "Not a senior citizen";

print "$name is - $status\n";

This will produce the following result −

Ali is - Not a senior citizen

Programming languages provide various control structures that allow for

more complicated execution paths. A loop statement allows us to execute a

statement or group of statements multiple times and following is the general

form of a loop statement in most of the programming languages

programming language provides the following types of loop to handle the

looping requirements.

While loop-Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the loop body.

Until loop-Repeats a statement or group of statements until a given condition

becomes true. It tests the condition before executing the loop body.

For loop-Executes a sequence of statements multiple times and abbreviates

the code that manages the loop variable.

foreach loop-The foreach loop iterates over a normal list value and sets the

variable VAR to be each element of the list in turn.

do...while loop-Like a while statement, except that it tests the condition at the

end of the loop body.

215

Control Structures

NOTES

Self-Instructional Material

nested loops-You can use one or more loop inside any another while, for or

do..while loop.

Loop Control Statements-Loop control statements change the execution

from its normal sequence. When execution leaves a scope, all automatic

objects that were created in that scope are destroyed.

next statement-Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

last statement-Terminates the loop statement and transfers execution to the

statement immediately following the loop.

continue statement-A continue BLOCK, it is always executed just before

the conditional is about to be evaluated again.

redo statement-The redo command restarts the loop block without

evaluating the conditional again. The continue block, if any, is not executed.

goto statement-Perl supports a goto command with three forms: goto label,

goto expr, and goto &name.

The Infinite Loop-A loop becomes infinite loop if a condition never

becomes false. The for loop is traditionally used for this purpose. Since none

of the three expressions that form the for loop are required, you can make an

endless loop by leaving the conditional expression empty.

#!/usr/local/bin/perl

 for(; ;) {

 printf "This loop will run forever.\n";

}

When the conditional expression is absent, it is assumed to be true. You may

have an initialization and increment expression, but as a programmer more

commonly use the for (;;) construct to signify an infinite loop.

216

Control Structures

NOTES

Self-Instructional Material

Figure 12.2 Condition block

13.3 SUBROUTINES

A Perl subroutine or function is a group of statements that together performs

a task. You can divide up your code into separate subroutines. How you

divide up your code among different subroutines is up to you, but logically

the division usually is so each function performs a specific task.

Perl uses the terms subroutine, method and function interchangeably.

13.3.1 Define and Call a Subroutine

The general form of a subroutine definition in Perl programming language is

as follows

sub subroutine_name {

 body of the subroutine

}

The typical way of calling that Perl subroutine is as follows

subroutine_name(list of arguments);

In versions of Perl before 5.0, the syntax for calling subroutines was slightly

different as shown below. This still works in the newest versions of Perl, but

it is not recommended since it bypasses the subroutine prototypes.

&subroutine_name(list of arguments);

217

Control Structures

NOTES

Self-Instructional Material

Let's have a look into the following example, which defines a simple function

and then call it. Because Perl compiles your program before executing it, it

doesn't matter where you declare your subroutine.

 Live Demo

#!/usr/bin/perl

Function definition

sub Hello {

 print "Hello, World!\n";

}

Function call

Hello();

When above program is executed, it produces the following result −

Hello, World!

13.3.2 Passing Arguments to a Subroutine

You can pass various arguments to a subroutine like you do in any other

programming language and they can be acessed inside the function using the

special array @_. Thus the first argument to the function is in $_[0], the

second is in $_[1], and so on.

You can pass arrays and hashes as arguments like any scalar but passing

more than one array or hash normally causes them to lose their separate

identities. So we will use references (explained in the next chapter) to pass

any array or hash. Let's try the following example, which takes a list of

numbers and then prints their average.

 Live Demo

#!/usr/bin/perl

Function definition

sub Average {

 # get total number of arguments passed.

 $n = scalar(@_);

 $sum = 0;

 foreach $item (@_) {

 $sum += $item;

 }

 $average = $sum / $n;

218

Control Structures

NOTES

Self-Instructional Material

 print "Average for the given numbers : $average\n";

}

Function call

Average(10, 20, 30);

When above program is executed, it produces the following result

Average for the given numbers : 20

13.3.3 Passing Lists to Subroutines

Because the @_ variable is an array, it can be used to supply lists to a

subroutine. However, because of the way in which Perl accepts and parses

lists and arrays, it can be difficult to extract the individual elements from @_.

If you have to pass a list along with other scalar arguments, then make list as

the last argument as shown below

 Live Demo

#!/usr/bin/perl

Function definition

sub PrintList {

 my @list = @_;

 print "Given list is @list\n";

}

$a = 10;

@b = (1, 2, 3, 4);

Function call with list parameter

PrintList($a, @b);

When above program is executed, it produces the following result

Given list is 10 1 2 3 4

13.3.4 Passing Hashes to Subroutines

When you supply a hash to a subroutine or operator that accepts a list, then

hash is automatically translated into a list of key/value pairs. For example

 Live Demo

#!/usr/bin/perl

Function definition

sub PrintHash {

 my (%hash) = @_;

 foreach my $key (keys %hash) {

219

Control Structures

NOTES

Self-Instructional Material

 my $value = $hash{$key};

 print "$key : $value\n";

 }

}

%hash = ('name' => 'Tom', 'age' => 19);

Function call with hash parameter

PrintHash(%hash);

When above program is executed, it produces the following result −

name : Tom

age : 19

13.3.5 Returning Value from a Subroutine

You can return a value from subroutine like you do in any other

programming language. If you are not returning a value from a subroutine

then whatever calculation is last performed in a subroutine is automatically

also the return value. You can return arrays and hashes from the subroutine

like any scalar but returning more than one array or hash normally causes

them to lose their separate identities. So we will use references (explained in

the next chapter) to return any array or hash from a function. Let's try the

following example, which takes a list of numbers and then returns their

average

 Live Demo

#!/usr/bin/perl

Function definition

sub Average {

 # get total number of arguments passed.

 $n = scalar(@_);

 $sum = 0;

 foreach $item (@_) {

 $sum += $item;

 }

 $average = $sum / $n;

 return $average;

}

220

Control Structures

NOTES

Self-Instructional Material

Check your Progress

1. What are Subroutines?

2. Define Passing Arguments to a Subroutine?

3. Define Passing Hashes to Subroutines?

4. Define Returning Value from a Subroutine?

5. What is Control Structures?

13.4 ANSWERS TO CHECK YOUR PROGRESS

1. A Perl subroutine or function is a group of statements that together

performs a task. You can divide up your code into separate

subroutines. How you divide up your code among different

subroutines is up to you, but logically the division usually is so each

function performs a specific task.

2. You can pass various arguments to a subroutine like you do in any

other programming language and they can be accessed inside the

function using the special array @_. Thus the first argument to the

function is in $_[0], the second is in $_[1].

3. When you supply a hash to a subroutine or operator that accepts a list,

then hash is automatically translated into a list of key/value pairs.

4. You can return a value from subroutine like you do in any other

programming language. If you are not returning a value from a

subroutine then whatever calculation is last performed in a subroutine

is automatically also the return value. You can return arrays and

hashes from the subroutine like any scalar but returning more than

one array or hash normally causes them to lose their separate

identities.

5. Perl conditional statements helps in the decision making, which

require that the programmer specifies one or more conditions to be

evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true,

and optionally, other statements to be executed if the condition is

determined to be false.

13.5 SUMMARY
 Perl conditional statements helps in the decision making, which

require that the programmer specifies one or more conditions to be

evaluated

 A loop statement allows us to execute a statement or group of

statements multiple times and following is the general form of a loop

statement in most of the programming languages programming

language provides the following types of loop to handle the looping

requirements.

 Loop becomes infinite loop if a condition never becomes false. The

for loop is traditionally used for this purpose.

221

Control Structures

NOTES

Self-Instructional Material

13.6 KEYWORDS

if statement: An if statement consists of a boolean expression followed by

one or more statements.

While loop: Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the loop body.

Until loop: Repeats a statement or group of statements until a given condition

becomes true. It tests the condition before executing the loop body.

13.7 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

1. Explain about The ? : Operator?

2. What is Loop Control Statements?

3. What is The Infinite Loop?

4. Explain about Passing Lists to Subroutines?

5. Explain about Define and Call a subroutine?

Long Answer questions:

1. Explain briefly about subroutines?

2. Explain about Decision making statements in Perl?

13.8 FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

222

Packages And Modules

NOTES

Self-Instructional Material

UNIT 14

PACKAGES AND MODULES

Structure

14.0 Introduction

14.1. Objective

14.2 Packages

14.3 Modules

14.3.1Create the Perl Module Tree

14.3.2 Installing Perl Module

14.4 Working with Files

14.4.1 Opening and Closing Files

14.4.2 Close Function

14.5 Data Manipulation

14.6 Answers to Check Your Progress

14.7 Summary

14.8 Keywords

14.9 Self Assessment Questions and Exercises

14.10 Further Readings

14.0. INTRODUCTION

This unit describes the Perl programming language packages and modules

regarding the working of files and data manipulation techniques. The

working with files and how to establish the modules with data manipulation

in Perl is explained.

14.1 OBJECTIVE

The users understands and learns the Perl Programming Concepts such as

 Working with Files

 Data Manipulation

14.2 PACKAGES

The package statement switches the current naming context to a specified

namespace (symbol table). Thus A package is a collection of code which

lives in its own namespace.A namespace is a named collection of unique

variable names (also called a symbol table).Namespaces prevent variable

name collisions between packages.

Packages enable the construction of modules which, when used, won't

clobber variables and functions outside of the modules's own namespace. The

223

Self-Instructional Material

Packages And Modules

NOTES

package stays in effect until either another package statement is invoked, or

until the end of the current block or file. You can explicitly refer to variables

within a package using the :: package qualifier. Following is an example

having main and Foo packages in a file. Here special variable PACKAGE has

been used to print the package name.

 Live Demo

#!/usr/bin/perl

This is main package

$i = 1;

print "Package name : " , __PACKAGE__ , " $i\n";

package Foo;

This is Foo package

$i = 10;

print "Package name : " , __PACKAGE__ , " $i\n";

package main;

This is again main package

$i = 100;

print "Package name : " , __PACKAGE__ , " $i\n";

print "Package name : " , __PACKAGE__ , " $Foo::i\n";

When above code is executed, it produces the following result −

Package name : main 1

Package name : Foo 10

Package name : main 100

Package name : main 10

BEGIN and END Blocks

You may define any number of code blocks named BEGIN and END, which

act as constructors and destructors respectively.

BEGIN { ... }

END { ... }

BEGIN { ... }

END { ... }

Every BEGIN block is executed after the perl script is loaded and compiled

but before any other statement is executed.Every END block is executed just

before the perl interpreter exits.The BEGIN and END blocks are particularly

useful when creating Perl modules.

224

Packages And Modules

NOTES

Self-Instructional Material

Following example shows its usage

 Live Demo

#!/usr/bin/perl

package Foo;

print "Begin and Block Demo\n";

BEGIN {

 print "This is BEGIN Block\n"

}

END {

 print "This is END Block\n"

}

1;

When above code is executed, it produces the following result

This is BEGIN Block

Begin and Block Demo

This is END Block

14.3 MODULES

A Perl module is a reusable package defined in a library file whose name is

the same as the name of the package with a .pm as extension.A Perl module

file called Foo.pm might contain statements like this.

#!/usr/bin/perl

package Foo;

sub bar {

 print "Hello $_[0]\n"

}

sub blat {

 print "World $_[0]\n"

}

1;

The Require Function

A module can be loaded by calling the require function as follows

#!/usr/bin/perl

require Foo;

225

Self-Instructional Material

Packages And Modules

NOTES

Foo::bar("a");

Foo::blat("b");

You must have noticed that the subroutine names must be fully qualified to

call them. It would be nice to enable the subroutine bar and blat to be

imported into our own namespace so we wouldn't have to use the Foo::

qualifier.

The Use Function

A module can be loaded by calling the use function.

#!/usr/bin/perl

use Foo;

bar("a");

blat("b");

Notice that we didn't have to fully qualify the package's function names. The

use function will export a list of symbols from a module given a few added

statements inside a module.require Exporter;

@ISA = qw(Exporter);

Then, provide a list of symbols (scalars, lists, hashes, subroutines, etc) by

filling the list variable named @EXPORT: For Example −

package Module;

require Exporter;

@ISA = qw(Exporter);

@EXPORT = qw(bar blat);

sub bar { print "Hello $_[0]\n" }

sub blat { print "World $_[0]\n" }

sub splat { print "Not $_[0]\n" } # Not exported!

1;

14.3.1 Create the Perl Module Tree

When you are ready to ship your Perl module, then there is standard way of

creating a Perl Module Tree. This is done using h2xs utility. This utility

comes along with Perl. Here is the syntax to use h2xs $h2xs -AX -n

ModuleName. For example, if your module is available in Person.pm file,

then simply issue the following command

226

Packages And Modules

NOTES

Self-Instructional Material

$h2xs -AX -n Person

This will produce the following result

Writing Person/lib/Person.pm

Writing Person/Makefile.PL

Writing Person/README

Writing Person/t/Person.t

Writing Person/Changes

Writing Person/MANIFEST

Here is the descritpion of these options −

-A omits the Autoloader code (best used by modules that define a large

number of infrequently used subroutines).

-X omits XS elements (eXternal Subroutine, where eXternal means external

to Perl, i.e., C).

-n specifies the name of the module.

So above command creates the following structure inside Person directory.

Actual result is shown above.

14.3.2 Installing Perl Module

Download a Perl module in the form tar.gz file. Use the following sequence

to install any Perl Module Person.pm which has been downloaded in as

Person.tar.gz file.

tar xvfz Person.tar.gz

cd Person

perl Makefile.PL

make

make install

The Perl interpreter has a list of directories in which it searches for modules

(global array @INC)

14.4 WORKING WITH FILES

The basics of handling files are simple: you associate a file handle with an

external entity (usually a file) and then use a variety of operators and

functions within Perl to read and update the data stored within the data stream

associated with the file handle. A file handle is a named internal Perl

structure that associates a physical file with a name. All file handles are

227

Self-Instructional Material

Packages And Modules

NOTES

capable of read/write access, so you can read from and update any file or

device associated with a file handle. However, when you associate a file

handle, you can specify the mode in which the file handle is opened.

Three basic file handles are - STDIN, STDOUT, and STDERR, which

represent standard input, standard output and standard error devices

respectively.

14.4.1Opening and Closing Files

There are following two functions with multiple forms, which can be used to

open any new or existing file in Perl.

open FILEHANDLE, EXPR

open FILEHANDLE

sysopen FILEHANDLE, FILENAME, MODE, PERMS

sysopen FILEHANDLE, FILENAME, MODE

Here FILEHANDLE is the file handle returned by the open function and

EXPR is the expression having file name and mode of opening the file.

Open Function

Following is the syntax to open file.txt in read-only mode. Here less than <

sign indicates that file has to be opend in read-only mode.

open(DATA, "<file.txt");

Here DATA is the file handle, which will be used to read the file. Here is the

example, which will open a file and will print its content over the screen.

#!/usr/bin/perl

open(DATA, "<file.txt") or die "Couldn't open file file.txt, $!";

while(<DATA>) {

 print "$_";

}

Following is the syntax to open file.txt in writing mode. Here less than > sign

indicates that file has to be opend in the writing mode.

open(DATA, ">file.txt") or die "Couldn't open file file.txt, $!";

This example actually truncates (empties) the file before opening it for

writing, which may not be the desired effect. If you want to open a file for

reading and writing, you can put a plus sign before the > or < characters.

For example, to open a file for updating without truncating it −

open(DATA, "+<file.txt"); or die "Couldn't open file file.txt, $!";

228

Packages And Modules

NOTES

Self-Instructional Material

open(DATA,">>file.txt") || die "Couldn't open file file.txt, $!";

A double >> opens the file for appending, placing the file pointer at the end,

so that you can immediately start appending information. However, you can't

read from it unless you also place a plus sign in front of it −

open(DATA,"+>>file.txt") || die "Couldn't open file file.txt, $!";

Following is the table, which gives the possible values of different modes

< or r-Read Only Access

> or w-Creates, Writes, and Truncates

>> or a-Writes, Appends, and Creates

+< or r+-Reads and Writes

+> or w+-Reads, Writes, Creates, and Truncates

+>> or a+-Reads, Writes, Appends, and Creates

Sysopen Function

The sysopen function is similar to the main open function, except that it uses

the system open() function, using the parameters supplied to it as the

parameters for the system function For example, to open a file for updating,

emulating the +<filename format from open

sysopen(DATA, "file.txt", O_RDWR);

Or to truncate the file before updating

sysopen(DATA, "file.txt", O_RDWR|O_TRUNC);

You can use O_CREAT to create a new file and O_WRONLY- to open file

in write only mode and O_RDONLY - to open file in read only mode.The

PERMS argument specifies the file permissions for the file specified, if it has

to be created. By default it takes 0x666.

Following is the table, which gives the possible values of MODE.

O_RDWR-Read and Write

O_RDONLY-Read Only

O_WRONLY-Write Only

O_CREAT-Create the file

O_APPEND-Append the file

O_TRUNC-Truncate the file

O_EXCL-Stops if file already exists

229

Self-Instructional Material

Packages And Modules

NOTES

O_NONBLOCK-Non-Blocking usability

14.4.2 Close Function

To close a filehandle, and therefore disassociate the filehandle from the

corresponding file, you use the close function. This flushes the filehandle's

buffers and closes the system's file descriptor.

close FILEHANDLE

close

If no FILEHANDLE is specified, then it closes the currently selected

filehandle. It returns true only if it could successfully flush the buffers and

close the file.

close(DATA) || die "Couldn't close file properly";

Reading and Writing Files

Once you have an open filehandle, you need to be able to read and write

information. There are a number of different ways of reading and writing data

into the file.

The <FILEHANDL> Operator

The main method of reading the information from an open filehandle is the

<FILEHANDLE> operator. In a scalar context, it returns a single line from

the filehandle. For example −

#!/usr/bin/perl

print "What is your name?\n";

$name = <STDIN>;

print "Hello $name\n";

When you use the <FILEHANDLE> operator in a list context, it returns a list

of lines from the specified filehandle. For example, to import all the lines

from a file into an array −

#!/usr/bin/perl

open(DATA,"<import.txt") or die "Can't open data";

@lines = <DATA>;

close(DATA);

getc Function

The getc function returns a single character from the specified

FILEHANDLE, or STDIN if none is specified

getc FILEHANDLE

230

Packages And Modules

NOTES

Self-Instructional Material

getc

Read Function

The read function reads a block of information from the buffered filehandle:

This function is used to read binary data from the file.

read FILEHANDLE, SCALAR, LENGTH, OFFSET

read FILEHANDLE, SCALAR, LENGTH

The length of the data read is defined by LENGTH, and the data is placed at

the start of SCALAR if no OFFSET is specified. Otherwise data is placed

after OFFSET bytes in SCALAR. The function returns the number of bytes

read on success, zero at end of file, or undef if there was an error.

14.5 DATA MANIPULATION

e Command

The most useful way to use the command-line options is by writing Perl one-

liners right in the shell. The -e option is the basis for most command-line

programs. It accepts the value of the parameter as the source text for a

program:

$ perl -e'print "Hello, World!\n"'

Hello, World!

Since this is a single statement in a block, you can omit the semicolon. Also,

when the -e option is used, Perl no longer looks for a program name on the

command line. This means you can't mix code with -e and a program file.

The -e option is repeatable, which lets you create entire scripts on the

command line:

$ perl -e'print "Hello, ";' -e'print "World!\n"'

Hello, World!

When chaining together multiple -e options, make sure you keep your

semicolons in the right place. I reflexively put semicolons in my -e lines just

for safety's sake, even if it's not strictly necessary because there's only one -e

option.With the -e option, any shell window becomes a Perl IDE. Use it as

your calculator to figure out how many 80-line records are in a megabyte:

$ perl -e'print 1024*1024/80, "\n"'

13107.2

Escaping Shell Characters

When you're creating command-line programs, it's important to pay attention

to quoting issues. In all my examples, I've quoted with single quotes—not

231

Self-Instructional Material

Packages And Modules

NOTES

double quotes—for two reasons. First, I want to be able to use double quotes

inside my programs for literals, and double quotes don't nest in the shell.

Second, I have to prevent shell interpolation, and single quotes make it easy.

For example, if I use double quotes, then

$ perl -MCGI -e"print $CGI::VERSION"

gets the $CGI interpolated as a shell variable. Consequently, unless you have

a shell variable called $CGI, Perl sees

print ::VERSION

You can escape the shell variables with a backslash:

$ perl -MCGI -e"print \$CGI::VERSION"

but that gets to be tough to maintain. That's why I stick with single quotes:

$ perl -MCGI -e'print $CGI::VERSION'

Windows has slightly different quoting issues. Windows doesn't have shell

variable interpolation, so there's no need for escaping variables with dollar

signs in them. On the other hand, you can use only double quotes under

Windows, which can be a challenge if you want to use double quotes in your

program. Under Windows, your "Hello, World" would look like this:

C:\> perl -e"print \"Hello, World!\n\""

The inner double quotes are escaped with backslashes.

The Diamond Operator

Perl's diamond operator, <>, has a great deal of magic built into it, making

operations on multiple files easy.Have you ever written something like this:

for my $file (@ARGV) {

 open(my $fh, $file) or die "Can't open $file: $!\n";

 while (my $line = <$fh>) {

 # do something with $line

 }

 close $fh;

 }

 $ perl myprog.pl file1.txt file2.txt file3.txt

So that your program can operate on three files at once? Use the diamond

operator instead. Perl keeps track of which file you're on, and opens and

232

Packages And Modules

NOTES

Self-Instructional Material

closes the filehandle as appropriate. With the diamond operator, it's as simple

as:

while (my $line = <>) {

 # do something

}

Perl keeps the name of the currently open file in $ARGV. The $. line counter

does not reset at the beginning of each file.The diamond operator figures

prominently in much Perl command-line magic, so it behooves you to get

comfortable with it.

-n and -p: Automatic Looping Powerhouses

The -n and -p options are the real workhorse options. They derive from the

Awk metaphor of "Do something to every line in the file," and work closely

with the diamond operator.The following program prepends each line with its

line number:

while (<>) {

 $_ = sprintf("%05d: %s", $., $_);

 print; # implicitly print $_

}

The construct of "Walk through a file, and print $_ after you do some magic

to it" is so common that Perl gives us the -p option to implement it for us.

The previous example can be written as:

#!/usr/bin/perl -p

$_ = sprintf("%05d: %s", $., $_);

or even shorter as:

$ perl -p -e'$_ = sprintf("%05d: %s", $. $_)'

The -n option is just like -p, except that there's no print at the bottom of the

implicit loop. This is useful for grep-like programs when you're only

interested in selected information. You might use it to print only commented-

out lines from your input, defined as beginning with optional whitespace and

a pound sign:

$ perl -n -e'print if /^\s*#/'

The next program prints every numeric value that looks like it's part of a

dollar value, as in "$43.50."

#!/usr/bin/perl -n

while (/\$(\d+\.\d\d)/g) {

233

Self-Instructional Material

Packages And Modules

NOTES

 print $1, "\n";

}

Check your Progress

1. What is symbol table?

2. What is the Require function in module?

3. What is the Use function in module?

4. What is Perl Module Tree?

5. What is Read Function?

14.6 ANSWERS TO CHECK YOUR PROGRESS

1. The package statement switches the current naming context to a

specified namespace (symbol table). Thus, A package is a collection

of code which lives in its own namespace. A namespace is a named

collection of unique variable names (also called a symbol table).

2. A module can be loaded by calling the require function as follows.

i. #!/usr/bin/perl

ii. require Foo;

iii. Foo::bar("a");

iv. Foo::blat("b");

3. A module can be loaded by calling the use function.

i. #!/usr/bin/perl

ii. use Foo;

iii. bar("a");

iv. blat("b");

4. When you are ready to ship your Perl module, then there is standard

way of creating a Perl Module Tree. This is done using h2xs utility.

This utility comes along with Perl. Here is the syntax to use h2xs

$h2xs -AX -n ModuleName.

5. The read function reads a block of information from the buffered

filehandle: This function is used to read binary data from the file.

read FILEHANDLE, SCALAR, LENGTH, OFFSET

read FILEHANDLE, SCALAR, LENGTH

234

Packages And Modules

NOTES

Self-Instructional Material

14.7 SUMMARY
 Packages enable the construction of modules which, when used,

won't clobber variables and functions outside of the modules's own

namespace.

 A Perl module is a reusable package defined in a library file whose

name is the same as the name of the package with a .pm as extension.

 A file handle is a named internal Perl structure that associates a

physical file with a name.

 Perl's diamond operator, <>, has a great deal of magic built into it,

making operations on multiple files easy.

 Three basic file handles are - STDIN, STDOUT, and STDERR,

which represent standard input, standard output and standard error

devices respectively.

14.8 KEYWORDS

Sysopen Function: The sysopen function is similar to the main open

function, except that it uses the system open() function, using the parameters

supplied to it as the parameters for the system function

Close Function: To close a filehandle, and therefore disassociate the

filehandle from the corresponding file, you use the close function.

e Command: The most useful way to use the command-line options is by

writing Perl one-liners right in the shell.

14.9 SELF ASSESSMENT QUESTIONS AND EXERCISES

Short Answer questions:

6. What is Perl Diamond Operator?

7. What is Escaping Shell Characters?

8. Explain about working with files?

9. Explain about Modules?

10. What are Packages?

Long Answer questions:

4. Explain briefly about the Perl Module Tree?

5. Explain briefly about Working with files?

6. Explain about Packages?

14.10. FURTHER READINGS

Rémy Card, Eric Dumas, and Franck Mével. The Linux kernel book.

John Wiley & Sons, Inc., 2003.

Steve Suchring. MySQL BBible. John Wiley, 2002.

235

Self-Instructional Material

Packages And Modules

NOTES

Rasmus Lerdorf and Levin Tatroe. Programming PHP. " O'Reilly

Media, Inc., 2002.

Wesley J. Chun. Core Python Programming. Prentice Hall, 2001.

Martin C. Brown. Perl: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Steven Holzner. PHP: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

Vikram Vaswani. MySQL: The complete reference. 2nd Edition, Tata

McGraw-Hill Publishing Company Limited, Indian Reprint, 2009.

236

Model Question Paper

NOTES

Self-Instructional Material

MODEL QUESTION PAPER

SECTION-A (10X2=20 marks)

1. Differentiate the terms “free open-source software” and “commercial

opensource software”.

2. Specify in what ways open source software is reliable and stable.

3. List out the data types of PHP.

4. Distinguish between implementing a web server in kernel mode and

user mode.

5. Write a short note on squirrel mail web mail services.

6. List three levels of network firewall security.

7. What is the use of GNU linker?

8. What is SSI?

9. List some X- Clients and its functionalities.

10. What is localization?

SECTION-B (5X5=25 marks)

11. Explain the overview of Free/Open Source Software.

 (OR)

Explain the advantages of Free Software and GNU/Linux, FOSS

usage.

12. What are shells? Describe the different types of shells available in

Linux.

 (OR)

Explain: Setting up email servers. (i) Using postfix (SMTP services)

(ii) Courire (IMAP& POP3).

13. What are the main objectives of file sharing? Explain the methods

used in Linux for performing file sharing services.

(OR)

Explain the usage of source code versioning and management tools

using CVS to manage source code revisions, patch and duff.

14. Explain the Model Driven Architecture.

 (OR)

237

Model Question Paper

NOTES

Self-Instructional Material

Explain the Features of Meta Object facility.

15. Discuss the basics of the X Windows server architecture.

 (OR)

What is GTK+ programming? Explain the applications of GTK+.

 SECTION-C (3X10=30 marks)

(Answer any three)

16. Explain the compiler tools in GNU.

17. Discuss the GNU Libc libraries and linker.

18. Explain the basics of X Windows server architecture.

19. Discuss about python programming.

20. How to setting up the firewall using netfilter?

